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[Public]

Spin Locks

• Used to serialize access to shared-data in short critical sections.

• As the name suggests, when the lock is held by some other thread, 

the waiting threads “spin” in a tight-loop until the lock is released.

• Three implementations
• Classic Spin Locks

• Ticket Spin Locks

• Queued Spin Locks
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[Public]

Overview: Classic Spin Lock Implementation

• A 32-bit word modelling the lock variable.

• Value == 0 implies the lock is in unlocked state.

• spin_lock(): Tries to atomically compare-and-exchange the lock variable from 0 

to 1. 
• If compare-exchange is successful, then the lock has been successfully acquired.

• Else, it spins until the value becomes 0 before trying the atomic compare-exchange again.

• spin_unlock():
• Resets the value of the lock variable to 0.
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[Public]

Overview: Ticket Spin Lock implementation

• A 32-bit word modelling the lock variable. Contains 2 parts

31                                                     16 15                                                              0

Ticket value of the next 

waiter

Ticket value of current lock 

holder



5 |

[Public]

Overview: Ticket Spin Lock implementation

• A 32-bit word modelling the lock variable. Contains 2 parts

Ticket value of the next 

waiter

Ticket value of current lock 

holder

spin_lock(): 

• old_val = atomic_fetch_add(1 << 16, lock)

• my_ticket = old_val >> 16

• current_ticket = (u16) old_val;

• If (my_ticket == current_ticket) Yay! I got the lock!

• Else spin until till lock[15:0] == my_ticket.

31                                                     16 15                                                              0
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[Public]

Overview: Ticket Spin Lock implementation

• A 32-bit word modelling the lock variable. Contains 2 parts

Ticket value of the next 

waiter

Ticket value of current lock 

holder

spin_unlock (): 

• lock[15:0] = lock[15:0]  + 1

31                                                     16 15                                                              0



Queued Spin Locks
Problem with classic spinlocks implementation:

• It is unfair: A CPU that came in first and started spinning waiting on the lock may not necessarily 
get the lock if there is some other CPU in contention. It really depends on who sees the LOCK → 
UNLOCK transition first.

• Cacheline Bouncing:  It causes cacheline bouncing of the line containing the lock variable when 
all the contending CPUs spin on the lock. Problem exacerbates on systems with large number of 
CPUs which try to contend on the lock.

Ticketing spinlock implementation can address the unfairness issue, but it won’t address the cacheline 
bouncing issue.

Hence Queued Spin Locks!



Queued Spin Locks

31                                     18 17     16 15                        9 8      7                             0

Lock 

value 

Pending 

bit

Unused

Index

CPU 

Number

Tail

qspinlock variable. 32 bits 
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31                                     18 17     16 15                        9 8      7                            0 

Lock value 

Pending bit

Unused

Index

CPU Number

Lock Value: Indicates the lock is held by someone or not. This is a 

single byte, but only Bit 0 is set while locking.
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Lock value 

Pending bit

Unused

Index

CPU Number

Pending bit: Used to indicate that there is one contender. If the lock is held and only one 

other waiter exists, only “Lock Value” and “Pending bit” suffices

31                                     18 17     16 15                        9 8      7                            0 
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Lock value 

Pending bit

Unused

Index

CPU Number

Tail: The combination of CPU Number and Index is used to indicate the tail of the queue of 

waiters of this lock. The tail bits are set when there are more than 1 waiters. 

Tail

31                                     18 17     16 15                        9 8      7                            0 
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Lock value 

Pending bit

Unused

Index

CPU Number

CPU Number: Indicates the CPU number of the tail waiter.

Tail

31                                     18 17     16 15                        9 8      7                            0 
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Lock value 

Pending bit

Unused

Index

CPU Number

Index: Indicates the “context” of the tail waiter. Note that each CPU can contend for 

some spin-lock in nested contexts of depth at most 4:  Task, softirq, hardirq, NMI. 

Hence 2 bits (Bits 16:17) are good enough to encode the index

NOTE: The spin-locks attempted to be taken in each of these contexts are different 

locks else there will be deadlocks.

Tail

31                                     18 17     16 15                        9 8      7                            0 
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CPU 0 1 2 3

struct qnode[4];

struct mcs_spinlock

unsigned long 

reserved[2];

struct qnode

struct mcs_spinlock 

* next;

int locked;

int count;

struct mcs_spinlock

Every CPU has a per-cpu variable, which is an 

array of 4 qnodes. 

Each qnode contains a mcs_spinlock object and a 

couple of reserved 8 bytes which are used in 

paravirt-spinlock case (not covered today)

Each mcs_spinlock object contains a pointer to 

next element in the queue, a locked 4-byte element 

and a count 4-byte element.

locked: Each waiter which is not in the head of the 

queue spins on the locked variable of its own 

mcs_spinlock. 

count: Indicates the nesting depth. Only updated 

for qnode[0].mcs_spinlock.count
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CPU 0 0 1 2 3

CPU 1 0 1 2 3

CPU 2 0 1 2 3

CPU 3 0 1 2 3

00000

LockP

e

n

d

i

n

g

UnusedidxCPU Number

Initially



Only one contender
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CPU 0 0 1 2 3

CPU 1 0 1 2 3

CPU 2 0 1 2 3

CPU 3 0 1 2 3

00000

CPUs 1 tries to get the lock by compare exchanging 0 

with Q_LOCKED (value = 1) for the qspinlock 32-bit 

variable

LockP

e

n

d

i

n

g

UnusedidxCPU Number
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CPU 0 0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

CPU 3 0 1 2 3

10000

CPUs 1 succeeds and has the lock

CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number
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CPU 0 0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

CPU 3 0 1 2 3

00000

LockP

e

n

d

i

n

g

Unuse

d

idxCPU 

Number

Once CPUs 1 is done, it sets the Lock byte 

to 0, thus releasing the lock

CPU 1



Two contenders
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

CPUs 1, 2 : Concurrently try to get the lock by 

compare exchanging 0 with Q_LOCKED on the 32-bit 

qspinlock variable

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

CPU 1
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0 1 2 3

CPU 1 0 1 2 3

0 1 2 3

0 1 2 3

10000

WLOG, let us assume that CPU 1 wins the race and is 

able to set the qspinlock value to 1. CPU 1 now has 

the lock.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

CPU 2 loses the race as it sees the old value to be 

non-zero. It sees if apart from the lock byte any other 

bytes are set. That would indicate other waiters. In 

this case there are none. 

CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

Since there are no waiters yet, it tries to atomically set 

the pending bit and get the old value (using 

atomic_fetch_or).
CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

0 1 2 3

11000

CPU 2 will read the old value (0, 0, 0, 0, 1) having updated the pending bit. 

CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 3

Since there are no waiters yet, it tries to atomically set 

the pending bit and get the old value (using 

atomic_fetch_or).
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0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

0 1 2 3

11000

From the old value, CPU 2 knows that it was the first 

to update the pending bit. So, it just spins on the lock 

byte to become 0

CPU 2 will read the old value (0, 0, 0, 0, 1) having updated the pending bit. 

CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 3
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0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

0 1 2 3

01000

CPU 1, once it is done will unlock by setting the lock 

byte to 0.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 3

CPU 1
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0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

0 1 2 3

10000

CPU 2, notice that the “Lock” byte is 0. It will 

atomically clear the pending bit and set the lock byte 

and acquire the lock. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 3

CPU 1
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

Once it is done, CPU 2 releases the lock by clearing 

the Lock byte.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

CPU 1



Three contenders
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

CPUs 0, 1, 2: All concurrently try to get the lock by 

compare exchanging 0 with Q_LOCKED (value = 1).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

CPU 1
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0 1 2 3

CPU 1 0 1 2 3

0 1 2 3

0 1 2 3

10000

WLOG, let us assume that CPU 1 wins the race and is 

able to set the Lock bit to 1.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

CPUs 0 and 2 check any of the bits other than Lock 

byte is set. If they find it so, they go to the queuing 

phase.
CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3



Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

In this case, since CPUs 0 and 2 don’t see any bits 

set, they try to atomically set the pending bit and get 

the old value (using atomic_fetch_or).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having updated the pending bit. 

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

In this case, since CPUs 0 and 2 don’t see any bits 

set, they try to atomically set the pending bit and get 

the old value (using atomic_fetch_or).
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 2 knows that it has successfully set the pending 

bit and no other bits are set. Hence it is next in line. It 

just spins until the Lock byte becomes 0.

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having updated the pending bit. 

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 0 knows that it wasn’t the first to set the pending 

bit. So, it has to queue. 

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having updated the pending bit. 

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3



Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 0 grabs the first available qnode. It does so by 

checking and incrementing 

qnode[0].mcs_spinlock.count. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

WLOG assume CPU 0 has the idx 0 available. 

It then generates the tail-encoding as 

(CPU-Number +1 , idx) = (1, 0). 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 0 then atomically exchanges the tail of the 

qspinlock with its tail encoding (1, 0). 

The old tail is (0, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

Since the old tail is (0, 0), CPU0 knows that it is at the 

head of the waiters. It just spins until (Pending, Lock) 

becomes (0, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

01001

CPU 1 is done with the lock. It releases it by setting 

the Lock byte to 0.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

01001

As CPU 0 is waiting for (Pending, Lock) to be (0, 0) 

and since pending bit is set, it still has to wait. 

However, CPU 2 is waiting for the Lock byte to be 0 

which it is.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10001

CPU 2 atomically sets (Pending, Lock) to (0, 1)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10001

CPU 0 still has to wait because it needs to have 

(Pending, Lock) to be (0, 0). 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3



Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00001

CPU 2 is done. It will set Lock byte to 0 and release 

the lock

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00001

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 0 notices (Pending, Lock) = (0, 0).

It checks if it is the tail, i.e.,

qspinlock.tail == (CPU0 + 1, CPU0. idx). 
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00001

CPU 0 notices (Pending, Lock) = (0, 0).

It checks if it is the tail, i.e.,

qspinlock.tail == (CPU0 + 1, CPU0. idx). 

As  it is true, it atomically tries to compare exchange the 

32-bit qspinlock dword from (1, 0, 0, 0, 0) to (0, 0, 0, 0, 1) 

thus clearing CPU number, idx and setting the Lock byte.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

CPU 0 succeeds in doing the atomic compare 

exchange and acquires the lock. It also decrements 

CPU0.qnode[0].mcs_spinlock.count to release the 

qnode.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0
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1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

Once CPU 0 is done, it will release the lock by 

clearing the Lock byte. 

0

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3



Four (or more) contenders
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

CPUs 0, 1, 2: All concurrently try to get the lock by 

compare exchanging 0 with Q_LOCKED (value = 1).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

WLOG, let us assume that CPU 1 wins the race and is 

able to set the Lock bit to 1.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

CPUs 0 and 2 check any of the bits other than Lock 

byte is set. If they find it so, they go to the queuing 

phase.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

In this case, since CPUs 0 and 2 don’t see any bits 

set, they try to atomically set the pending bit and get 

the old value (using atomic_fetch_or)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having 

updated the pending bit. 

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit. 

In this case, since CPUs 0 and 2 don’t see any bits 

set, they try to atomically set the pending bit and get 

the old value (using atomic_fetch_or)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 2 knows that it has successfully set the pending 

bit and no other bits are set. Hence it is next in line. It 

just spins until the Lock byte becomes 0.

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having 

updated the pending bit. 

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 0 knows that it wasn’t the first to set the pending 

bit. So, it has to queue. 

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having 

updated the pending bit. 

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 0 grabs the first available qnode. It does so by 

checking and incrementing qnode.mcs_spinlock.count.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

WLOG assume CPU 0 has the idx 0 available. 

It then generates the tail-encoding as 

(CPU Number +1 , idx) = (1, 0). 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 0 then atomically exchanges the tail of the 

qspinlock with its tail encoding (1, 0). 

The old tail is (0, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3



Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

Since the old tail is (0, 0), CPU0 knows that it is at the 

head of the waiters. It just spins until (Pending, Lock) 

becomes (0, 0)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

Now CPU3 attempts to get the lock. The attempt to 

compare exchange 32-bit qspinlock variable from 0 to 

1 fails. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU3 checks if apart from the Lock byte any other 

bits are set. They are. So, CPU 3 has to queue. 

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 3 checks qnodes[0].mcs_spinlock.count. WLOG 

assume it is 1. Which means that qnode[0] is already 

taken in another context. So, it grabs qnode[1] after 

incrementing qnodes[0].mcs_spinlock.count to 2.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 3 then sets 

qnode[1].mcs_spinlock.locked = 0.

qnode[1].mcs_spinlock.next = NULL.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 3 then generates the tail encoding as

(CPU ID + 1, idx) = (4, 1).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

CPU 3 atomically exchanges the tail of the qspinlock 

(1, 0) with the new tail encoding (4, 1)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3



0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

Queued Spin Locks

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

From the old tail value (1, 0) CPU 3 decodes that the 

previous node is CPU 0 idx 0. 
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

From the old tail value (1, 0) CPU 3 decodes that the 

previous node is CPU 0 idx 0. 

So, it updates 

CPU0.qnode[0].mcs_spinlock.next =      

                                     &CPU3.qnode[1].mcs_spinlock

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

CPU 3 then spins until 

CPU3.qnode[1].mcs_spinlock.locked becomes

non-zero.
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At this stage:

CPU 1 has the lock.

CPU 2 is spinning on Lock byte to become 0

CPU 0 is spinning on (Pending, Lock) to become (0, 0)

CPU 3 is spinning on CPU3.qn[0].mcs_sl.locked to be 1
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Now CPU 1 is done. It releases the lock by writing 0 to 

the Lock byte. 
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CPU 0 is spinning on (Pending, Lock) to become (0, 0)

CPU 3 is spinning on CPU3.qn[0].mcs_sl.locked to be 1

Neither is true.

CPU2 is waiting for Lock to be 0, which is now true.
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CPU2 atomically sets (pending, lock) to (0, 1), thus 

acquiring the lock.
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Once CPU2 is done, it will clear the Lock byte, thus 

releasing the lock. 
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At this stage, 

CPU 3 is waiting for CPU3.qn[1].mcs_sl.locked to be 1.

Which is not true. 

CPU 0 is waiting for (pending, lock) to be (0, 0) which 

is true
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CPU 0 checks the qspinlock tail = (4, 1). Which is 

different from its encoding (1, 0). 

So, there are waiters in the list.
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CPU 0 then sets CPU0.qn[0].mcs_sl.next->locked to 1.
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CPU 0 atomically sets the “Lock” byte to 1.

CPU 0 then sets CPU0.qn[0].mcs_sl.next->locked to 1.

CPU 3 stops spinning on CPU3.qn[1].mcs_sl.locked
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CPU 3 now spins until qspinlock (pending, lock) is

(0, 0).
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CPU 0 decrements CPU0.qn[0].mcs_sl.count and 

releases the qnode. 
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CPU 0 is now the lock owner. 
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Once CPU 0 is done, it will release the lock by setting 

the qspinlock Lock byte to 0.
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Since (pending, lock) is now (0, 0) CPU3 stops 

spinning. 

CPU 3 checks qspinlock.tail = (4, 1) which matches its 

tail encoding. 
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Since there is no other waiter at this point, CPU 3 

atomically tries to change qspinlock from

(4, 1, 0, 0, 0) to (0, 0, 0, 0, 1).
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If CPU 3 succeeds, it gets the lock. 
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Since there is no other waiter at this point, CPU 3 

atomically tries to change qspinlock from 

(4, 1, 0, 0, 0) to (0, 0, 0, 0, 1).

Suppose it fails!
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The failure can only happen if a new waiter has 

updated its identity in the tail. Say CPU 4 with index 3.
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Then CPU 3 will atomically set the Lock byte.
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LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 4

0



Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10035

CPU 3 will then wait for CPU3.qn[1].mcs_sl.next to be 

non-NULL.
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When CPU3.qn[1].mcs_sl.next is non-NULL, it will 

point to the next waiter.

 

Since CPU 3 is going to take the lock, it will update 

the next waiter’s mcs_spinlock.locked variable to 1 to 

stop its spinning.
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CPU3 now holds the lock. 
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Let us go back to the case where CPU 3 was the last 

waiter and it succeeded in setting qspinlock to

(0, 0, 0, 0, 1) and become the lock owner.
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When it is done, it will update the Lock byte to 0 thus 

releasing the lock. 
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