
Queued Spinlocks in the

Linux Kernel

Motivation, Design and Implementation

Gautham R. Shenoy

<gautham.shenoy@amd.com>

mailto:gautham.shenoy@amd.com

2 |

[Public]

Spin Locks

• Used to serialize access to shared-data in short critical sections.

• As the name suggests, when the lock is held by some other thread,

the waiting threads “spin” in a tight-loop until the lock is released.

• Three implementations
• Classic Spin Locks

• Ticket Spin Locks

• Queued Spin Locks

3 |

[Public]

Overview: Classic Spin Lock Implementation

• A 32-bit word modelling the lock variable.

• Value == 0 implies the lock is in unlocked state.

• spin_lock(): Tries to atomically compare-and-exchange the lock variable from 0

to 1.
• If compare-exchange is successful, then the lock has been successfully acquired.

• Else, it spins until the value becomes 0 before trying the atomic compare-exchange again.

• spin_unlock():
• Resets the value of the lock variable to 0.

4 |

[Public]

Overview: Ticket Spin Lock implementation

• A 32-bit word modelling the lock variable. Contains 2 parts

31 16 15 0

Ticket value of the next

waiter

Ticket value of current lock

holder

5 |

[Public]

Overview: Ticket Spin Lock implementation

• A 32-bit word modelling the lock variable. Contains 2 parts

Ticket value of the next

waiter

Ticket value of current lock

holder

spin_lock():

• old_val = atomic_fetch_add(1 << 16, lock)

• my_ticket = old_val >> 16

• current_ticket = (u16) old_val;

• If (my_ticket == current_ticket) Yay! I got the lock!

• Else spin until till lock[15:0] == my_ticket.

31 16 15 0

6 |

[Public]

Overview: Ticket Spin Lock implementation

• A 32-bit word modelling the lock variable. Contains 2 parts

Ticket value of the next

waiter

Ticket value of current lock

holder

spin_unlock ():

• lock[15:0] = lock[15:0] + 1

31 16 15 0

Queued Spin Locks
Problem with classic spinlocks implementation:

• It is unfair: A CPU that came in first and started spinning waiting on the lock may not necessarily
get the lock if there is some other CPU in contention. It really depends on who sees the LOCK →
UNLOCK transition first.

• Cacheline Bouncing: It causes cacheline bouncing of the line containing the lock variable when
all the contending CPUs spin on the lock. Problem exacerbates on systems with large number of
CPUs which try to contend on the lock.

Ticketing spinlock implementation can address the unfairness issue, but it won’t address the cacheline
bouncing issue.

Hence Queued Spin Locks!

Queued Spin Locks

31 18 17 16 15 9 8 7 0

Lock

value

Pending

bit

Unused

Index

CPU

Number

Tail

qspinlock variable. 32 bits

Queued Spin Locks

31 18 17 16 15 9 8 7 0

Lock value

Pending bit

Unused

Index

CPU Number

Lock Value: Indicates the lock is held by someone or not. This is a

single byte, but only Bit 0 is set while locking.

Queued Spin Locks

Lock value

Pending bit

Unused

Index

CPU Number

Pending bit: Used to indicate that there is one contender. If the lock is held and only one

other waiter exists, only “Lock Value” and “Pending bit” suffices

31 18 17 16 15 9 8 7 0

Queued Spin Locks

Lock value

Pending bit

Unused

Index

CPU Number

Tail: The combination of CPU Number and Index is used to indicate the tail of the queue of

waiters of this lock. The tail bits are set when there are more than 1 waiters.

Tail

31 18 17 16 15 9 8 7 0

Queued Spin Locks

Lock value

Pending bit

Unused

Index

CPU Number

CPU Number: Indicates the CPU number of the tail waiter.

Tail

31 18 17 16 15 9 8 7 0

Queued Spin Locks

Lock value

Pending bit

Unused

Index

CPU Number

Index: Indicates the “context” of the tail waiter. Note that each CPU can contend for

some spin-lock in nested contexts of depth at most 4: Task, softirq, hardirq, NMI.

Hence 2 bits (Bits 16:17) are good enough to encode the index

NOTE: The spin-locks attempted to be taken in each of these contexts are different

locks else there will be deadlocks.

Tail

31 18 17 16 15 9 8 7 0

Queued Spin Locks

CPU 0 1 2 3

struct qnode[4];

struct mcs_spinlock

unsigned long

reserved[2];

struct qnode

struct mcs_spinlock

* next;

int locked;

int count;

struct mcs_spinlock

Every CPU has a per-cpu variable, which is an

array of 4 qnodes.

Each qnode contains a mcs_spinlock object and a

couple of reserved 8 bytes which are used in

paravirt-spinlock case (not covered today)

Each mcs_spinlock object contains a pointer to

next element in the queue, a locked 4-byte element

and a count 4-byte element.

locked: Each waiter which is not in the head of the

queue spins on the locked variable of its own

mcs_spinlock.

count: Indicates the nesting depth. Only updated

for qnode[0].mcs_spinlock.count

Queued Spin Locks

CPU 0 0 1 2 3

CPU 1 0 1 2 3

CPU 2 0 1 2 3

CPU 3 0 1 2 3

00000

LockP

e

n

d

i

n

g

UnusedidxCPU Number

Initially

Only one contender

Queued Spin Locks

CPU 0 0 1 2 3

CPU 1 0 1 2 3

CPU 2 0 1 2 3

CPU 3 0 1 2 3

00000

CPUs 1 tries to get the lock by compare exchanging 0

with Q_LOCKED (value = 1) for the qspinlock 32-bit

variable

LockP

e

n

d

i

n

g

UnusedidxCPU Number

Queued Spin Locks

CPU 0 0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

CPU 3 0 1 2 3

10000

CPUs 1 succeeds and has the lock

CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

Queued Spin Locks

CPU 0 0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

CPU 3 0 1 2 3

00000

LockP

e

n

d

i

n

g

Unuse

d

idxCPU

Number

Once CPUs 1 is done, it sets the Lock byte

to 0, thus releasing the lock

CPU 1

Two contenders

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

CPUs 1, 2 : Concurrently try to get the lock by

compare exchanging 0 with Q_LOCKED on the 32-bit

qspinlock variable

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

CPU 1

Queued Spin Locks

0 1 2 3

CPU 1 0 1 2 3

0 1 2 3

0 1 2 3

10000

WLOG, let us assume that CPU 1 wins the race and is

able to set the qspinlock value to 1. CPU 1 now has

the lock.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

CPU 2 loses the race as it sees the old value to be

non-zero. It sees if apart from the lock byte any other

bytes are set. That would indicate other waiters. In

this case there are none.

CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

Since there are no waiters yet, it tries to atomically set

the pending bit and get the old value (using

atomic_fetch_or).
CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

0 1 2 3

11000

CPU 2 will read the old value (0, 0, 0, 0, 1) having updated the pending bit.

CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 3

Since there are no waiters yet, it tries to atomically set

the pending bit and get the old value (using

atomic_fetch_or).

Queued Spin Locks

0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

0 1 2 3

11000

From the old value, CPU 2 knows that it was the first

to update the pending bit. So, it just spins on the lock

byte to become 0

CPU 2 will read the old value (0, 0, 0, 0, 1) having updated the pending bit.

CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

0 1 2 3

01000

CPU 1, once it is done will unlock by setting the lock

byte to 0.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 3

CPU 1

Queued Spin Locks

0 1 2 3

0 1 2 3

CPU 2 0 1 2 3

0 1 2 3

10000

CPU 2, notice that the “Lock” byte is 0. It will

atomically clear the pending bit and set the lock byte

and acquire the lock.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 3

CPU 1

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

Once it is done, CPU 2 releases the lock by clearing

the Lock byte.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

CPU 1

Three contenders

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

CPUs 0, 1, 2: All concurrently try to get the lock by

compare exchanging 0 with Q_LOCKED (value = 1).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

CPU 1

Queued Spin Locks

0 1 2 3

CPU 1 0 1 2 3

0 1 2 3

0 1 2 3

10000

WLOG, let us assume that CPU 1 wins the race and is

able to set the Lock bit to 1.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

CPUs 0 and 2 check any of the bits other than Lock

byte is set. If they find it so, they go to the queuing

phase.
CPU 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

In this case, since CPUs 0 and 2 don’t see any bits

set, they try to atomically set the pending bit and get

the old value (using atomic_fetch_or).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having updated the pending bit.

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

In this case, since CPUs 0 and 2 don’t see any bits

set, they try to atomically set the pending bit and get

the old value (using atomic_fetch_or).

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 2 knows that it has successfully set the pending

bit and no other bits are set. Hence it is next in line. It

just spins until the Lock byte becomes 0.

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having updated the pending bit.

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 0 knows that it wasn’t the first to set the pending

bit. So, it has to queue.

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having updated the pending bit.

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 0 grabs the first available qnode. It does so by

checking and incrementing

qnode[0].mcs_spinlock.count.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

WLOG assume CPU 0 has the idx 0 available.

It then generates the tail-encoding as

(CPU-Number +1 , idx) = (1, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 0 then atomically exchanges the tail of the

qspinlock with its tail encoding (1, 0).

The old tail is (0, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

Since the old tail is (0, 0), CPU0 knows that it is at the

head of the waiters. It just spins until (Pending, Lock)

becomes (0, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

01001

CPU 1 is done with the lock. It releases it by setting

the Lock byte to 0.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

01001

As CPU 0 is waiting for (Pending, Lock) to be (0, 0)

and since pending bit is set, it still has to wait.

However, CPU 2 is waiting for the Lock byte to be 0

which it is.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10001

CPU 2 atomically sets (Pending, Lock) to (0, 1)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10001

CPU 0 still has to wait because it needs to have

(Pending, Lock) to be (0, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00001

CPU 2 is done. It will set Lock byte to 0 and release

the lock

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00001

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 0 notices (Pending, Lock) = (0, 0).

It checks if it is the tail, i.e.,

qspinlock.tail == (CPU0 + 1, CPU0. idx).

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00001

CPU 0 notices (Pending, Lock) = (0, 0).

It checks if it is the tail, i.e.,

qspinlock.tail == (CPU0 + 1, CPU0. idx).

As it is true, it atomically tries to compare exchange the

32-bit qspinlock dword from (1, 0, 0, 0, 0) to (0, 0, 0, 0, 1)

thus clearing CPU number, idx and setting the Lock byte.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

CPU 0 succeeds in doing the atomic compare

exchange and acquires the lock. It also decrements

CPU0.qnode[0].mcs_spinlock.count to release the

qnode.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

Once CPU 0 is done, it will release the lock by

clearing the Lock byte.

0

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Four (or more) contenders

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00000

CPUs 0, 1, 2: All concurrently try to get the lock by

compare exchanging 0 with Q_LOCKED (value = 1).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

WLOG, let us assume that CPU 1 wins the race and is

able to set the Lock bit to 1.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

CPUs 0 and 2 check any of the bits other than Lock

byte is set. If they find it so, they go to the queuing

phase.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

In this case, since CPUs 0 and 2 don’t see any bits

set, they try to atomically set the pending bit and get

the old value (using atomic_fetch_or)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having

updated the pending bit.

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit.

In this case, since CPUs 0 and 2 don’t see any bits

set, they try to atomically set the pending bit and get

the old value (using atomic_fetch_or)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 2 knows that it has successfully set the pending

bit and no other bits are set. Hence it is next in line. It

just spins until the Lock byte becomes 0.

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having

updated the pending bit.

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 0 knows that it wasn’t the first to set the pending

bit. So, it has to queue.

Assume that CPU 2 wins the race. It will read the old value (0, 0, 0, 0, 1) having

updated the pending bit.

CPU 0 will read the old value (0, 0, 0, 1, 1) having updated the pending bit.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

CPU 0 grabs the first available qnode. It does so by

checking and incrementing qnode.mcs_spinlock.count.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11000

WLOG assume CPU 0 has the idx 0 available.

It then generates the tail-encoding as

(CPU Number +1 , idx) = (1, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 0 then atomically exchanges the tail of the

qspinlock with its tail encoding (1, 0).

The old tail is (0, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

Since the old tail is (0, 0), CPU0 knows that it is at the

head of the waiters. It just spins until (Pending, Lock)

becomes (0, 0)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

Now CPU3 attempts to get the lock. The attempt to

compare exchange 32-bit qspinlock variable from 0 to

1 fails.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU3 checks if apart from the Lock byte any other

bits are set. They are. So, CPU 3 has to queue.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 3 checks qnodes[0].mcs_spinlock.count. WLOG

assume it is 1. Which means that qnode[0] is already

taken in another context. So, it grabs qnode[1] after

incrementing qnodes[0].mcs_spinlock.count to 2.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 3 then sets

qnode[1].mcs_spinlock.locked = 0.

qnode[1].mcs_spinlock.next = NULL.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11001

CPU 3 then generates the tail encoding as

(CPU ID + 1, idx) = (4, 1).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

CPU 3 atomically exchanges the tail of the qspinlock

(1, 0) with the new tail encoding (4, 1)

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

Queued Spin Locks

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

From the old tail value (1, 0) CPU 3 decodes that the

previous node is CPU 0 idx 0.

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

From the old tail value (1, 0) CPU 3 decodes that the

previous node is CPU 0 idx 0.

So, it updates

CPU0.qnode[0].mcs_spinlock.next =

 &CPU3.qnode[1].mcs_spinlock

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

CPU 3 then spins until

CPU3.qnode[1].mcs_spinlock.locked becomes

non-zero.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

11014

At this stage:

CPU 1 has the lock.

CPU 2 is spinning on Lock byte to become 0

CPU 0 is spinning on (Pending, Lock) to become (0, 0)

CPU 3 is spinning on CPU3.qn[0].mcs_sl.locked to be 1

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

01014

Now CPU 1 is done. It releases the lock by writing 0 to

the Lock byte.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

01014

CPU 0 is spinning on (Pending, Lock) to become (0, 0)

CPU 3 is spinning on CPU3.qn[0].mcs_sl.locked to be 1

Neither is true.

CPU2 is waiting for Lock to be 0, which is now true.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10014

CPU2 atomically sets (pending, lock) to (0, 1), thus

acquiring the lock.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00014

Once CPU2 is done, it will clear the Lock byte, thus

releasing the lock.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00014

At this stage,

CPU 3 is waiting for CPU3.qn[1].mcs_sl.locked to be 1.

Which is not true.

CPU 0 is waiting for (pending, lock) to be (0, 0) which

is true

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00014

CPU 0 checks the qspinlock tail = (4, 1). Which is

different from its encoding (1, 0).

So, there are waiters in the list.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10014

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 0 atomically sets the “Lock” byte to 1.

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10014

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 0 atomically sets the “Lock” byte to 1.

CPU 0 then sets CPU0.qn[0].mcs_sl.next->locked to 1.

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10014

CPU 0 atomically sets the “Lock” byte to 1.

CPU 0 then sets CPU0.qn[0].mcs_sl.next->locked to 1.

CPU 3 stops spinning on CPU3.qn[1].mcs_sl.locked

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10014

CPU 3 now spins until qspinlock (pending, lock) is

(0, 0).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10014

CPU 0 decrements CPU0.qn[0].mcs_sl.count and

releases the qnode.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10014

CPU 0 is now the lock owner.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00014

Once CPU 0 is done, it will release the lock by setting

the qspinlock Lock byte to 0.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00014

Since (pending, lock) is now (0, 0) CPU3 stops

spinning.

CPU 3 checks qspinlock.tail = (4, 1) which matches its

tail encoding.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00014

Since there is no other waiter at this point, CPU 3

atomically tries to change qspinlock from

(4, 1, 0, 0, 0) to (0, 0, 0, 0, 1).

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

If CPU 3 succeeds, it gets the lock.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00014

Since there is no other waiter at this point, CPU 3

atomically tries to change qspinlock from

(4, 1, 0, 0, 0) to (0, 0, 0, 0, 1).

Suppose it fails!

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

00035

The failure can only happen if a new waiter has

updated its identity in the tail. Say CPU 4 with index 3.

0 1 2 3

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 4

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10035

Then CPU 3 will atomically set the Lock byte.

0 1 2 3

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 4

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10035

CPU 3 will then wait for CPU3.qn[1].mcs_sl.next to be

non-NULL.

0 1 2 3

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 4

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10035

When CPU3.qn[1].mcs_sl.next is non-NULL, it will

point to the next waiter.

Since CPU 3 is going to take the lock, it will update

the next waiter’s mcs_spinlock.locked variable to 1 to

stop its spinning.

0 1 2 3

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 4

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10035

CPU3 now holds the lock.

0 1 2 3

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

CPU 4

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

10000

Let us go back to the case where CPU 3 was the last

waiter and it succeeded in setting qspinlock to

(0, 0, 0, 0, 1) and become the lock owner.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

Queued Spin Locks

1 2 3

0 1 2 3

0 1 2 3

0 2 3

00000

When it is done, it will update the Lock byte to 0 thus

releasing the lock.

LockP

e

n

d

i

n

g

UnusedidxCPU Number

CPU 1

CPU 0

CPU 2

CPU 3

0

1

Questions?

98 |

[Public]

COPYRIGHT AND DISCLAIMER

©2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Linux is a registered
trademark of Linus Torvalds. Other company, product, and service names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate releases, for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has
risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise
correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the
content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: Queued Spinlocks in the Linux Kernel
	Slide 2: Spin Locks
	Slide 3: Overview: Classic Spin Lock Implementation
	Slide 4: Overview: Ticket Spin Lock implementation
	Slide 5: Overview: Ticket Spin Lock implementation
	Slide 6: Overview: Ticket Spin Lock implementation
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Questions?
	Slide 98
	Slide 99

