
Saga of PCIe on ARM
Manivannan Sadhasivam | Linaro

Bangalore Linux Kernel Meetup - 2023

Who am I?
● Senior Linux Kernel Engineer - Qualcomm Landing team

○ Working from Erode, Tamil Nadu

● Open Source contributor since 2016
○ Primarily focussed on Linux Kernel (> 650 patches in mainline)

● Linux Kernel Maintainership
○ PCI Endpoint Subsystem - Reviewer

○ Designware PCIe controller drivers

○ Designware eDMA drivers

○ Qualcomm MHI bus and NAND driver

○ ARM Bitmain, RDA Micro, Actions Semi SoCs

Disclaimer

This presentation is not a deep dive into PCIe on ARM

but rather breaking common misconceptions…

Agenda
● PCIe in a Nutshell

● PCIe in Linux Kernel

● PCIe support on x86 (Intel/AMD)

● PCIe support on ARM

● Key Takeaways

PCIe in a Nutshell
● Peripheral Component Interconnect

● PCIe - PCI Express (Software compatible with PCI)

● High speed expansion bus for PCs, Servers,

Laptops, Mobiles
○ Marketed as Plug and Play (Hotplug)

● Specification developed by Intel
○ Later moved under PCI-SIG

● Works in Lanes (Tx/Rx differential pairs)

● Supports Power Management (PCI PM, ASPM)

● Supports I/O Virtualization (SR-IOV)

https://pcisig.com/

PCIe Architecture
● Point to Point topology

○ PCIe Root Complex - Host

○ PCIe Endpoint - Device

● Each PCIe device is identified by Bus Device

Function (BDF) identifier
○ 8 bit Bus - 256 Busses

○ 5 bit Device - 32 Devices

○ 3 bit Function - 8 Functions

● PCIe Switches are often used for port expansion

PCIe in Linux Kernel
● Linux kernel supported PCI from early v1.3 release and PCIe since v2.6

● Code organization:
○ PCI core - drivers/pci/ (Common for both PCI and PCIe)

○ PCIe core - drivers/pci/pcie/

○ PCI/PCIe RC/EP controller drivers - drivers/pci/controllers/

○ PCI/PCIe Endpoint core - drivers/pci/endpoint/

○ PCI/PCIe drivers for devices - All over the place (Ethernet, WLAN, NVMe etc…)

● So connecting a PCIe device to a Linux machine should just WORK?

PCIe support on x86 (Intel/AMD)
● Most of the PCIe devices when connected to a x86 machine will just work

○ Is that because, Intel developed PCI in the early days? Heh NO!!!

● Then why?

● One of the reasons is BIOS/ACPI
○ In x86 machines, BIOS enumerates all the PCIe devices attached to the system

during early boot.

○ All the resource allocations (I/O, MEM, IRQ) are handled by BIOS

○ It even configures the devices for power management (ASPM)

■ Linux just queries the ACPI namespace to get the list of devices attached to the system

instead of doing enumeration

PCIe support on x86 (Intel/AMD)
● But it’s not just BIOS/ACPI, it is also about PCIe controllers

○ In x86 machines, the chip vendor will often integrate their own in-house PCIe

controllers in the chip

○ So there are no integration issues between PCIe and CPU

● In x86, the issues with PCIe mostly come from hot pluggable PCIe devices as

they are not controlled by BIOS

○ They may even take down the entire system if buggy*

● Since most of the heavy lifting is done by BIOS/ACPI, there is no need for a

dedicated device driver in kernel for PCIe controllers

PCIe support on ARM
● Most of the ARM based SoCs have issues with PCIe

○ Is that because they all are ARM SoCs? Heh NO!!!

● Then why?

● One of the reasons is NO BIOS/ACPI
○ Most* of the ARM based SoCs are targeted for mobile and embedded use cases,

so there is no BIOS/ACPI as in the PC world

○ All the resource allocations (I/O, MEM, IRQ) are handled by the OS with the help of

devicetree

○ Often the resource provided in devicetree (MEM) is not sufficient for connecting

external GPUs

○ ARM only licenses CPU IPs to chip vendors

https://www.devicetree.org/

PCIe support on ARM
● But it’s not just BIOS/ACPI, it is also about PCIe controllers

○ In ARM SoCs, the chip vendors often integrate 3rd party PCIe controller IPs (like

Synopsys Designware) with their ARM CPU

○ So there are IP integration issues

● Since there is no BIOS/ACPI, ARM-based SoCs always require a

dedicated device driver for their controller
○ If the vendor doesn’t upstream the controller driver, then it will be outdated and turns

out to be buggy

○ People who upstream the driver support, often get no support from the vendors*

PCIe support on ARM
● What’s wrong with a dedicated driver for PCIe controllers in upstream?

○ Need to manually control all the resources (clocks, regulators, IRQ) for both the

controller as well as the devices

○ The driver needs to be updated regularly to support each SoC (if required) from the

vendor

○ The driver may not support all PCIe features like ASPM, Hotplug, SR-IOV etc..

■ Most of the drivers won’t control these resources during suspend, resulting in poor system

power management

■ But most of the vendors don’t add support for all SoCs

PCIe support on ARM
● What’s wrong with a dedicated driver for PCIe controllers in downstream?

EVERYTHING

PCIe support on ARM

○ There might be no proper distro support (Ubuntu, Debian, Fedora, etc…)

○ The vendors often provide ancient Yocto release or community based distros such as

Armbian, Raspbian, Linaro debian etc…

● Even if the driver support is upstreamed and maintained, there are issues

with packaging

Key Takeaways

● The PCIe issue on ARM SoCs is NOT due to ARM

● Standard* BIOS/ACPI is needed to get a seamless PCIe experience

○ The issue is mostly due to the chip vendors and their product use case (Embedded)

● Even with devicetree, the PCIe controller integration should not be buggy

○ There should also be a good upstream support for the device driver of the PCIe

controller

● Standard distro support is also nice to have

Key Takeaways

● For connecting GPU cards to ARM boards, a standard PCIe connector on the

board (not just M.2) along with a decent PCIe MEM range (> 1GiB) in devicetree

is necessary

● There are also ARM based PCs and Laptops, started to emerge in the market

and they have decent PCIe support
○ Socionext Synquacer (ACPI)

○ Lenovo Thinkpad X13s (only M.2 and devicetree)

Thank you

