
IOMMU: How It Helps to

Provide IO Security

Vasant Hegde <vasant.hegde@amd.com>

2 |

[AMD Official Use Only - General]

Agenda

• Introduction

• DMA remapping

• Interrupt remapping

• Shared Virtual Addressing (SVA)

• vIOMMU

3 |

[AMD Official Use Only - General]

Motivation for IOMMU

• IOMMUs was originally promoted along with 64-bit x86 processors
• Support DMA from peripheral devices that support 32-bit addresses only

• Currently vast majority of peripherals support 64-bit DMA
• Those devices that do not support 64-bit can get buffers in the 32-bit range.

• Today IOMMU is center of IO security
• Protects system from malicious IO devices

• Provides trusted IO access to confidential guest

4 |

[AMD Official Use Only - General]

• Like Memory Management Unit (MMU) on a
CPU, but for IO devices

• Creates per domain virtual address spaces for
DMA

• Domain per IOMMU group (devices are grouped for
isolation in IOMMU groups)

• Provides remapping services for interrupts

• Useful on bare metal for device isolation and
addressing limitations

• Useful for virtualization that includes pass-
through of devices (VFIO) into a guest
environment

What is an IOMMU?

5 |

[AMD Official Use Only - General]

Physical View

Reference : https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

6 |

[AMD Official Use Only - General]

IOMMU Subsystem in Linux Kernel – High-Level Overview

• On x86 system IOMMU enabled by default if the IOMMU
is present in the system

• Even on bare metal!

• Every IOMMU domain gets its own IO virtual address
space

• IOMMU domain is often a single device, but could be multiple
devices (“device group”)

• Cannot access memory that is not mapped into its address space

• Can utilize features like memory encryption

• Can access memory beyond the devices IO address limitations
(e.g., 32-bit device on a CPU with a 52-bit address space)

• Hypervisors use IOMMUs to create virtual address
space for devices passed through to the guest

• IOMMU command line parameters are a mix of generic
and vendor specific options

• iommu=pt – Use a 1:1 mapping from IOVA to SPA

• amd_iommu=<options> - AMD driver specific options

• intremap=on/off – Interrupt remapping

• https://www.kernel.org/doc/html/latest/admin-guide/kernel-
parameters.html

Reference : https://lenovopress.lenovo.com/lp1467-an-introduction-to-iommu-infrastructure-in-the-linux-kernel

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://lenovopress.lenovo.com/lp1467-an-introduction-to-iommu-infrastructure-in-the-linux-kernel

7 |

[AMD Official Use Only - General]

AMD IOMMUs Key Data Structure

Reference : https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

8 |

[AMD Official Use Only - General]

DMA Translation

• Address translation and memory protection in host system

• Making address translation faster through IOMMU cache

• Enabling shared address space in heterogeneous system

• Enabling pre-translation through IOMMU

• Enabling demand paging from devices (dynamic page fault)

• Nested address translation in virtualized system

• Invalidating IOMMU mappings

9 |

[AMD Official Use Only - General]

DMA Address View

Reference : https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

10 |

[AMD Official Use Only - General]

DMA Translation and Memory Protection

Reference : https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

11 |

[AMD Official Use Only - General]

IOMMU DMA APIs

• Implementation is completely transparent to device drivers

• IOMMU driver will setup dma_ops for the devices

• Device driver will use dma_* APIs

• /* include/linux/iommu.h */

• extern int iommu_map(struct iommu_domain *domain, unsigned long iova,

phys_addr_t paddr, size_t size, int prot, gfp_t gfp);

• extern size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova,

size_t size);

• extern size_t iommu_unmap_fast(struct iommu_domain *domain,

unsigned long iova, size_t size,

struct iommu_iotlb_gather *iotlb_gather);

• extern ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,

struct scatterlist *sg, unsigned int nents,

int prot, gfp_t gfp);

12 |

[AMD Official Use Only - General]

Created by IOMMU during boot.

Transparent to device driver.

Interrupt Remapping implementation

• Interrupt remapping is transparent to device

• During boot, IOMMU driver creates interrupt remapping domain and sets ir domain in device structure

• During irq allocation, remapping domain allocates vector, stores it in remapping table and gives table index

to device

• Device will use index provided by IOMMU to deliver the interrupt

• IOMMU will intercept the interrupt and uses remapping table to deliver interrupt to host

X86 vector domainMSI domain Interrupt remapping domaindevice

13 |

[AMD Official Use Only - General]

Interrupt remapping internal

14 |

[AMD Official Use Only - General]

Shared Virtual Addressing (SVA)

• Devices use same virtual address with CPU

• Device can DMA to process address space

• Uses MMU for handling IO page faults

• Uses mmu notifier for TLB invalidations

• Use case

• Pointer as pointer in heterogeneous system

• DMA to user space address

• No need to pin the memory
• Device can handle page fault

15 |

[AMD Official Use Only - General]

SVA Data Structures

16 |

[AMD Official Use Only - General]

SVA Flow

Device

Process address space

Kernel buffer

User buffer

Kernel space

1. malloc request

2. Request device to

 initiate DMA (using

 process VA). Uses

 PASID to uniquely

 identify each process

3. DMA to process address space directly

 (IOMMU triggers interrupt to CPU for handling page

 faults)

17 |

[AMD Official Use Only - General]

SVA Upstream Status

• AMD had special module in kernel for supporting SVA

• Later IOMMU core layer is enhanced to provide generic set of API for enabling SVA

• Intel and Arm SMMU v3 supports generic SVA APIs

• Working on enabling SVA support for AMD driver

• https://lore.kernel.org/linux-iommu/20231016104351.5749-1-vasant.hegde@amd.com/T/#t

18 |

[AMD Official Use Only - General]

HW-vIOMMU

• Only support PCI pass-through devices

• No longer use Shadow Host Table

• Use nested IO page-table

• Guest (x86-compatible) table for gIOVA -> GPA
• Managed by guest IOMMU driver

• Host (AMD-specific) table for GPA -> SPA

• Managed by VFIO/iommufd driver

• Use interrupt acceleration (AMD AVIC) for
delivering interrupt to vCPU

• Use case

• Guest IO protection

• Guest shared virtual addressing

• Nested pass-through devices

Reference : KVM forum 2020

https://kvmforum2020.sched.com/event/eE3H/amd-viommu-a-hardware-assisted-virtual-iommu-technology-suravee-suthikulpanit-wei-huang-amd

19 |

[AMD Official Use Only - General]

vIOMMU Upstream Status

• Under heavy development in upstream

• It will be on top of iommufd (/dev/iommu) interface

• AMD vIOMMU implement

• https://lore.kernel.org/linux-iommu/20230621235508.113949-1-suravee.suthikulpanit@amd.com/

20 |

[AMD Official Use Only - General]

Reference

• https://lenovopress.lenovo.com/lp1467-an-introduction-to-iommu-infrastructure-in-the-linux-

kernel

• https://www.amd.com/en/support/tech-docs/amd-io-virtualization-technology-iommu-

specification

• https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

• https://kvmforum2020.sched.com/event/eE3H/amd-viommu-a-hardware-assisted-virtual-iommu-

technology-suravee-suthikulpanit-wei-huang-amd

https://lenovopress.lenovo.com/lp1467-an-introduction-to-iommu-infrastructure-in-the-linux-kernel
https://lenovopress.lenovo.com/lp1467-an-introduction-to-iommu-infrastructure-in-the-linux-kernel
https://www.amd.com/en/support/tech-docs/amd-io-virtualization-technology-iommu-specification
https://www.amd.com/en/support/tech-docs/amd-io-virtualization-technology-iommu-specification
https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf
https://kvmforum2020.sched.com/event/eE3H/amd-viommu-a-hardware-assisted-virtual-iommu-technology-suravee-suthikulpanit-wei-huang-amd
https://kvmforum2020.sched.com/event/eE3H/amd-viommu-a-hardware-assisted-virtual-iommu-technology-suravee-suthikulpanit-wei-huang-amd

21 |

[AMD Official Use Only - General]

COPYRIGHT AND DISCLAIMER

©2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

23 |

[AMD Official Use Only - General]

Backup

24 |

[AMD Official Use Only - General]

Reference : https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

https://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

	Slide 1: IOMMU: How It Helps to Provide IO Security
	Slide 2: Agenda
	Slide 3: Motivation for IOMMU
	Slide 4: What is an IOMMU?
	Slide 5: Physical View
	Slide 6: IOMMU Subsystem in Linux Kernel – High-Level Overview
	Slide 7: AMD IOMMUs Key Data Structure
	Slide 8: DMA Translation
	Slide 9: DMA Address View
	Slide 10: DMA Translation and Memory Protection
	Slide 11: IOMMU DMA APIs
	Slide 12: Interrupt Remapping implementation
	Slide 13: Interrupt remapping internal
	Slide 14: Shared Virtual Addressing (SVA)
	Slide 15: SVA Data Structures
	Slide 16: SVA Flow
	Slide 17: SVA Upstream Status
	Slide 18: HW-vIOMMU
	Slide 19: vIOMMU Upstream Status
	Slide 20: Reference
	Slide 21
	Slide 22
	Slide 23: Backup
	Slide 24

