
Linux Kernel Real-Time Design &

Challenges with Emerging Telco/5G RT Workloads

Srivatsa Bhat

Principal Software Engineer

Microsoft Linux Systems Group

Linux Kernel Meetup Bangalore

4 November 2023

What is Real-Time?

Understanding ‘Real-Time’

What is ‘Real-Time’ in Operating Systems?

• Key property: Must provide predictable low-latency guarantees!

• Key metric: Wakeup or Scheduling Latency

• Real-Time is NOT “real fast”

• Trade-off between throughput vs per-task latency bounds

Who needs a Real-Time OS?

• Apps which have stringent latency requirements

• Catastrophic consequences if latency deadlines are missed

• Ex: Robotics & Industrial Automation, Telco/5G RAN

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Task 1

(Runnable)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Scheduling

Latency

Task 1

(Runnable)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Scheduling

Latency

Scheduling Latency: Unbounded

Task 1

(Runnable)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Scheduling

Latency

Scheduling Latency: Unbounded

Task 1

(Runnable)

Time

P
ri

o
ri

ty

Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Scheduling

Latency

Scheduling Latency: Unbounded

Task 1

(Runnable)

Time

P
ri

o
ri

ty

Real-Time Linux Kernel

Task 1

(Running)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Scheduling

Latency

Scheduling Latency: Unbounded

Task 1

(Runnable)

Time

P
ri

o
ri

ty

Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Scheduling

Latency

Scheduling Latency: Unbounded

Task 1

(Runnable)

Time

P
ri

o
ri

ty

Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Running)

Context

Switch

Task 1

(Runnable)

Task 2

(Runnable)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Scheduling

Latency

Scheduling Latency: Unbounded

Task 1

(Runnable)

Time

P
ri

o
ri

ty

Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Running)

Context

Switch

Scheduling

Latency

Task 1

(Runnable)

Task 2

(Runnable)

Scheduling Latency in Linux Kernel: RT vs Non-RT

Time

P
ri

o
ri

ty

Non Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Runnable)
Task 2

(Running)

Context

Switch

Scheduling

Latency

Scheduling Latency: Unbounded

Task 1

(Runnable)

Time

P
ri

o
ri

ty

Real-Time Linux Kernel

Task 1

(Running)

Task 2

(Running)

Context

Switch

Scheduling

Latency

Scheduling Latency:

Small + Bounded

Task 1

(Runnable)

Task 2

(Runnable)

Real-Time Preemption

(PREEMPT_RT)

• Nearly all kernel code is made to be preemptible (ex:

spinlocks, IRQ handlers)

• Preemptible code is available to priority scheduling

• Bounded execution for non-preemptible code in the

critical paths (ex: no arbitrary loops)

What makes Linux Kernel ‘Real-Time’?

Telco/5G RAN background

Radio Access Network (RAN) for Telco/5G

Local Data Center

(Near-Edge)

5G Radio Tower + Server

(Far-Edge)
Core Network

Workload: RT app

DU or “Distributed Unit”
Workload: Non-RT app

CU or “Centralized Unit”

Radio Access Network (RAN) for Telco/5G

Local Data Center

(Near-Edge)

5G Radio Tower + Server

(Far-Edge)
Core Network

Workload: RT app

DU or “Distributed Unit”
Workload: Non-RT app

CU or “Centralized Unit”

OS latency requirements for RAN: < 10 us scheduling latency

Impact of exceeding latency constraints: call drops & retries

Telco/5G Real-Time app - Distributed Unit (DU)

• FlexRAN – Intel’s reference implementation for RAN workload

• App’s latency constraints are dictated by 5G protocol (3GPP spec)

• App characteristics:

• Uses DPDK in polling mode to process network packets

• Uses high real-time priority (SCHED_FIFO/90+)

• Multi-threaded & CPU intensive

• App aborts if latency exceeds acceptable thresholds

Linux kernel Real-Time design (PREEMPT_RT)

Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

• Real-Time Preemption: Makes most kernel ops preemptible

Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

• Real-Time Preemption: Makes most kernel ops preemptible

• Bounded Execution: Non-preemptible code execution is finite + predictable

Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

• Real-Time Preemption: Makes most kernel ops preemptible

• Bounded Execution: Non-preemptible code execution is finite + predictable

• Mitigation for Priority Inversion: Solved using priority inheritance protocols

Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

• Real-Time Preemption: Makes most kernel ops preemptible

• Bounded Execution: Non-preemptible code execution is finite + predictable

• Mitigation for Priority Inversion: Solved using priority inheritance protocols

• Real-Time Scheduling Algorithms: SCHED_FIFO, SCHED_RR, SCHED_DEADLINE

Isolation: Shielding RT app from OS jitter

Housekeeping

CPUs

CPUs isolated

for RT workload

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Isolation: Shielding RT app from OS jitter
CPU isolation:

• Use ‘isolcpus’ or cpusets to dedicate subset of CPUs to RT app

• Isolcpus takes specified CPUs out of the scheduler’s purview

• Use CPU affinity to pin tasks of RT app to isolated CPUs

Housekeeping

CPUs

CPUs isolated

for RT workload

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Isolation: Shielding RT app from OS jitter
CPU isolation:

• Use ‘isolcpus’ or cpusets to dedicate subset of CPUs to RT app

• Isolcpus takes specified CPUs out of the scheduler’s purview

• Use CPU affinity to pin tasks of RT app to isolated CPUs

Interrupt Affinity:

• Affine IRQs to housekeeping CPUs

Housekeeping

CPUs

CPUs isolated

for RT workload

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Isolation: Shielding RT app from OS jitter
CPU isolation:

• Use ‘isolcpus’ or cpusets to dedicate subset of CPUs to RT app

• Isolcpus takes specified CPUs out of the scheduler’s purview

• Use CPU affinity to pin tasks of RT app to isolated CPUs

Interrupt Affinity:

• Affine IRQs to housekeeping CPUs

Full tickless execution:

• Use ‘nohz_full’ to complete disable periodic timer (scheduling)

ticks on isolated CPUs

Housekeeping

CPUs

CPUs isolated

for RT workload

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Isolation: Shielding RT app from OS jitter
CPU isolation:

• Use ‘isolcpus’ or cpusets to dedicate subset of CPUs to RT app

• Isolcpus takes specified CPUs out of the scheduler’s purview

• Use CPU affinity to pin tasks of RT app to isolated CPUs

Interrupt Affinity:

• Affine IRQs to housekeeping CPUs

Full tickless execution:

• Use ‘nohz_full’ to complete disable periodic timer (scheduling)

ticks on isolated CPUs

Adjust placement of deferred processing:

• Move OS housekeeping work off of the isolated CPUs: Ex: RCU

callback processing

Housekeeping

CPUs

CPUs isolated

for RT workload

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Isolation: Shielding RT app from OS jitter
CPU isolation:

• Use ‘isolcpus’ or cpusets to dedicate subset of CPUs to RT app

• Isolcpus takes specified CPUs out of the scheduler’s purview

• Use CPU affinity to pin tasks of RT app to isolated CPUs

Interrupt Affinity:

• Affine IRQs to housekeeping CPUs

Full tickless execution:

• Use ‘nohz_full’ to complete disable periodic timer (scheduling)

ticks on isolated CPUs

Adjust placement of deferred processing:

• Move OS housekeeping work off of the isolated CPUs: Ex: RCU

callback processing

Automation: Use tuned package’s ‘real-time’ profile

Housekeeping

CPUs

CPUs isolated

for RT workload

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Real-Time Preemption

• CONFIG_PREEMPT_RT: Allows kernel to be configured as real-time

• Kernel code is now preemptible except for preempt-disabled critical sections

• Achieved by redesigning fundamental kernel primitives to allow preemption

• Ex: Sleepable spinlocks, threaded interrupt handlers

• Priority scheduling: RT app with high-prio can preempt low-prio kernel threads

• Non-preemptible code is audited to have bounded worst-case execution

Real-Time Scheduling Algorithms

Real-Time Scheduling Algorithms

SCHED_FIFO:

• First-In First-Out policy

• Fixed priority scheduling with prio range: 1 – 99 (highest)

• Runs highest prio task to completion (yield)

Real-Time Scheduling Algorithms

SCHED_FIFO:

• First-In First-Out policy

• Fixed priority scheduling with prio range: 1 – 99 (highest)

• Runs highest prio task to completion (yield)

SCHED_RR:

• Round Robin policy

• Same as SCHED_FIFO, except for RR with same-prio tasks

Real-Time Scheduling Algorithms

SCHED_FIFO:

• First-In First-Out policy

• Fixed priority scheduling with prio range: 1 – 99 (highest)

• Runs highest prio task to completion (yield)

SCHED_RR:

• Round Robin policy

• Same as SCHED_FIFO, except for RR with same-prio tasks

SCHED_DEADLINE:

• Not a fixed prio scheduling algorithm

• Tasks must specify params to describe their real-time demands

• Params: Deadline D, Runtime R, Period P

• Algo: Guarantees at least runtime ‘R’ within deadline ‘D’ in

every period ‘P’

Stability challenges with CPU intensive RT apps

Stability challenges with CPU intensive RT apps

What happens if a high-prio RT app

causes low-prio kernel threads to

starve permanently?

Stability challenges with CPU intensive RT apps

Problem

• Per-CPU kernel threads cannot be moved to

housekeeping cores

• High prio RT tasks that never yield will starve

kernel threads

• Impact: System hangs and instability

What happens if a high-prio RT app

causes low-prio kernel threads to

starve permanently?

Stability challenges with CPU intensive RT apps

Problem

• Per-CPU kernel threads cannot be moved to

housekeeping cores

• High prio RT tasks that never yield will starve

kernel threads

• Impact: System hangs and instability

Solution

• Short-term/Workaround: stalld package, which

temporarily prio-boosts starving kthreads

• Long-term: Redesign Linux kernel

housekeeping to allow for full isolation

What happens if a high-prio RT app

causes low-prio kernel threads to

starve permanently?

Stability challenges with CPU intensive RT apps
loop-rt.c

Stability challenges with CPU intensive RT apps
loop-rt.c

Run loop-rt on isolated CPU 2

$ taskset –c 2 ./loop-rt &

Stability challenges with CPU intensive RT apps
loop-rt.c

Run loop-rt on isolated CPU 2

$ taskset –c 2 ./loop-rt &

Before

Stability challenges with CPU intensive RT apps
loop-rt.c

Run loop-rt on isolated CPU 2

$ taskset –c 2 ./loop-rt &

Before No tasks runnable on CPU 2

Stability challenges with CPU intensive RT apps
loop-rt.c

Run loop-rt on isolated CPU 2

$ taskset –c 2 ./loop-rt &

Before

After

Stability challenges with CPU intensive RT apps
loop-rt.c

Run loop-rt on isolated CPU 2

$ taskset –c 2 ./loop-rt &

Before

After

loop-rt, ktimersoftd,

ksoftirqd and kworker

runnable on CPU2

Stability challenges with CPU intensive RT apps
loop-rt.c

Run loop-rt on isolated CPU 2

$ taskset –c 2 ./loop-rt &

Before

After

ktimersoftd, ksoftirqd and

kworker starved of CPU time!

Stability challenges with CPU intensive RT apps
Start & destroy a container from

housekeeping CPU

$ docker run –it ubuntu /bin/bash

[ubuntu]$ // Attempt to exit the container

Stability challenges with CPU intensive RT apps
Start & destroy a container from

housekeeping CPU

$ docker run –it ubuntu /bin/bash

[ubuntu]$ // Attempt to exit the container

events_highpri kworker

also runnable on CPU 2

Stability challenges with CPU intensive RT apps

events_highpri kworker

also runnable on CPU 2

kworker/events, kworker/ipv6_addrconf,

systemd-timesyncd & dockerd all stuck in D state!!!

Start & destroy a container from

housekeeping CPU

$ docker run –it ubuntu /bin/bash

[ubuntu]$ // Attempt to exit the container

Stability challenges with CPU intensive RT apps

Stability challenges with CPU intensive RT apps

Stability challenges with CPU intensive RT apps
void unregister_netdevice_many()

{

 …

 rtnl_lock();

 …

 flush_all_backlogs();

 ….

 rtnl_unlock();

}

Stability challenges with CPU intensive RT apps
void flush_all_backlogs()

{

 …

 for_each_online_cpu(cpu) {

 queue_work_on(…);

 }

 …

 for_each_online_cpu(cpu) {

 flush_work(…);

 }

}

void unregister_netdevice_many()

{

 …

 rtnl_lock();

 …

 flush_all_backlogs();

 ….

 rtnl_unlock();

}

Stability challenges with CPU intensive RT apps
void flush_all_backlogs()

{

 …

 for_each_online_cpu(cpu) {

 queue_work_on(…);

 }

 …

 for_each_online_cpu(cpu) {

 flush_work(…);

 }

}

void unregister_netdevice_many()

{

 …

 rtnl_lock();

 …

 flush_all_backlogs();

 ….

 rtnl_unlock();

}

Similar problems exist across many Linux subsystems:

ext4, cgroups, ftrace, sysctl …

Stability challenges with CPU intensive RT apps
flush_all_backlogs issue has been addressed in later kernels

Stability challenges with CPU intensive RT apps
flush_all_backlogs issue has been addressed in later kernels

but even on 6.6, we still see per-CPU

kthreads starving in other areas…

Stability challenges with CPU intensive RT apps
flush_all_backlogs issue has been addressed in later kernels

but even on 6.6, we still see per-CPU

kthreads starving in other areas…

Stability challenges with CPU intensive RT apps
flush_all_backlogs issue has been addressed in later kernels

but even on 6.6, we still see per-CPU

kthreads starving in other areas…

Stability challenges with CPU intensive RT apps
but even on 6.6, we still see per-CPU

kthreads starving in other areas…

Resources for more info…

Linux PREEMPT_RT patches

• realtime:start [Wiki] (linuxfoundation.org)

• realtime:preempt_rt_versions [Wiki] (linuxfoundation.org)

• realtime:documentation:start [Wiki] (linuxfoundation.org)

Linux Plumbers Conference

• Real-Time & Scheduling Microconference

https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/preempt_rt_versions
https://wiki.linuxfoundation.org/realtime/documentation/start

Q & A

	Slide 1: Linux Kernel Real-Time Design & Challenges with Emerging Telco/5G RT Workloads
	Slide 2: What is Real-Time?
	Slide 3: Understanding ‘Real-Time’
	Slide 4: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 5: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 6: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 7: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 8: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 9: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 10: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 11: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 12: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 13: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 14: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 15: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 16: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 17: Real-Time Preemption (PREEMPT_RT)
	Slide 18: Telco/5G RAN background
	Slide 19: Radio Access Network (RAN) for Telco/5G
	Slide 20: Radio Access Network (RAN) for Telco/5G
	Slide 21: Telco/5G Real-Time app - Distributed Unit (DU)
	Slide 22: Linux kernel Real-Time design (PREEMPT_RT)
	Slide 23: Understanding OS jitter
	Slide 24: Understanding OS jitter
	Slide 25: Understanding OS jitter
	Slide 26: Understanding OS jitter
	Slide 27: Understanding OS jitter
	Slide 28: Understanding OS jitter
	Slide 29: Isolation: Shielding RT app from OS jitter
	Slide 30: Isolation: Shielding RT app from OS jitter
	Slide 31: Isolation: Shielding RT app from OS jitter
	Slide 32: Isolation: Shielding RT app from OS jitter
	Slide 33: Isolation: Shielding RT app from OS jitter
	Slide 34: Isolation: Shielding RT app from OS jitter
	Slide 35: Real-Time Preemption
	Slide 36: Real-Time Scheduling Algorithms
	Slide 37: Real-Time Scheduling Algorithms
	Slide 38: Real-Time Scheduling Algorithms
	Slide 39: Real-Time Scheduling Algorithms
	Slide 40: Stability challenges with CPU intensive RT apps
	Slide 41: Stability challenges with CPU intensive RT apps
	Slide 42: Stability challenges with CPU intensive RT apps
	Slide 43: Stability challenges with CPU intensive RT apps
	Slide 44: Stability challenges with CPU intensive RT apps
	Slide 45: Stability challenges with CPU intensive RT apps
	Slide 46: Stability challenges with CPU intensive RT apps
	Slide 47: Stability challenges with CPU intensive RT apps
	Slide 48: Stability challenges with CPU intensive RT apps
	Slide 49: Stability challenges with CPU intensive RT apps
	Slide 50: Stability challenges with CPU intensive RT apps
	Slide 51: Stability challenges with CPU intensive RT apps
	Slide 52: Stability challenges with CPU intensive RT apps
	Slide 53: Stability challenges with CPU intensive RT apps
	Slide 54: Stability challenges with CPU intensive RT apps
	Slide 55: Stability challenges with CPU intensive RT apps
	Slide 56: Stability challenges with CPU intensive RT apps
	Slide 57: Stability challenges with CPU intensive RT apps
	Slide 58: Stability challenges with CPU intensive RT apps
	Slide 59: Stability challenges with CPU intensive RT apps
	Slide 60: Stability challenges with CPU intensive RT apps
	Slide 61: Stability challenges with CPU intensive RT apps
	Slide 62: Stability challenges with CPU intensive RT apps
	Slide 63: Stability challenges with CPU intensive RT apps
	Slide 64: Resources for more info…
	Slide 65: Q & A

