= Microsoft Azure

Linux Kernel Real-Time Desigh &
Challenges with Emerging Telco/5G RT Workloads

Srivatsa Bhat
Principal Software Engineer
Microsoft Linux Systems Group

Linux Kernel Meetup Bangalore
4 November 2023

What is Real-Time?

Understanding ‘Real-Time’

What is ‘Real-Time' in Operating Systems?
» Key property: Must provide predictable low-latency guarantees!
« Key metric: Wakeup or Scheduling Latency

« Real-Time is NOT “real fast”
« Trade-off between throughput vs per-task latency bounds

Who needs a Real-Time OS?

* Apps which have stringent latency requirements

« (Catastrophic consequences if latency deadlines are missed
* Ex: Robotics & Industrial Automation, Telco/5G RAN

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency in Linux Kernel: RT vs Non-RT

Priority

Time

Non Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

Priority

Task 1
(Running)

Time

Non Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

| Task 2
I GULLELL)

Priority

Task 1
(Running)

Time

Non Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

| Task 2 I Task 2
I GULLELL) (Running)
> L | | | | |
>
S
= Context
o Switch

_____ |
Task 1 | Task1 I
(Running) B GULLGEL) |

Time

Non Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

| Task 2 I Task 2

I GULLELL) (Running)
L Scheduling J Context

‘ Latency | Switch

=TT =71
Task 1 | Task1 I
(Running) B GULLGEL) |

Time

Priority

Non Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency: Unbounded

| Task 2 I Task 2

I GULLELL) (Running)
L Scheduling J Context

‘ Latency | Switch

=TT =71
Task 1 | Task1 I
(Running) B GULLGEL) |

Time

Priority

Non Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency: Unbounded

A A
=== 71
| IEN @ | Task 2
I GULLELL) | (Running)
> _——— - >
= =
5 | oredutng | 5
= « Scheduling | Context =
o ‘ Latency | Switch Q-
=== 71
Task 1 | Task 1 I
(Running) I (Runnable) |
Time Time

Non Real-Time Linux Kernel Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency: Unbounded

A A

=== 71

| Task 2 | Task 2

I GULLELL) | (Running)
> _——— - >
e iy
S | wa | e
= « Scheduling | Context =
& Ly | switch &

=== 71
Task 1 | Task 1 I Task 1
(Running) B GULLGEL) | (Running)
Time Time

Non Real-Time Linux Kernel Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency: Unbounded

A A
Task 2
(Runnable)
=== 71 r
| Task 2 I Task 2 I
I (Runnable) | (Running) 1
> _———— - > -
= iy
5 | o 1 5
= « Scheduling | Context =
& Ly | switch &
=== 71
Task 1 | Task 1 I Task 1
(Running) I (Runnable) | (Running)
Time Time

Non Real-Time Linux Kernel Real-Time Linux Kernel

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency: Unbounded

| Task 2 I Task 2
I (Runnable) | (Running)

L Scheduling J Gyt
Ly | switch

=TT =71
Task 1 | Task1 I
(Running) B GULLGEL) |

Priority

Priority

v

Time

Non Real-Time Linux Kernel

Task 2
(Runnable)

1
1 Task 2
I I (Running)

Context
Switch

|- -==- -
Task 1 , Task 1 |
(Running) L (Runnable) |

Time

Real-Time Linux Kernel

v

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency: Unbounded

| Task 2 I Task 2
I (Runnable) | (Running)

L Scheduling J Gyt
‘ Latency | Sl

=TT =71
Task 1 | Task1 I
(Running) B GULLGEL) |

Priority

Priority

v

Time

Non Real-Time Linux Kernel

Task 2
(Runnable)

1
1 Task 2
' (Running)
Scheduling Context
Latency Switch
- === -
Task 1 Task 1 |
(Running) L (Runnable) |

Time

Real-Time Linux Kernel

v

Scheduling Latency in Linux Kernel: RT vs Non-RT

Scheduling Latency: Unbounded Scheduling Latency:
X X Small + Bounded
Task 2
- - (Runnable)
I Task 2 ;

1
| Task 2 1 Task 2
I (Runnable) | (Running) I | (Running)
Scheduling Context
Latency Switch
(— -— — 1 l I ———————— by |
Task 1 | Task 1 I Task 1 Task 1 I
(Running) I (Runnable) | (Running) L (Runnable) I

Time Time

L Scheduling J Context
‘ Latency | Siteh

Priority
Priority

v
v

Non Real-Time Linux Kernel Real-Time Linux Kernel

What makes Linux Kernel ‘Real-Time'?

Nearly all kernel code is made to be preemptible (ex:

. . spinlocks, IRQ handlers)
Real-Time Preemption P

(PREEMPT_RT)

Preemptible code is available to priority scheduling

Bounded execution for non-preemptible code in the
critical paths (ex: no arbitrary loops)

Telco/5G RAN background

Radio Access Network (RAN) for Telco/5G

oy —

Core Network

Local Data Center
(Near-Edge)

Workload: Non-RT app
CU or “Centralized Unit”

R
A

5G Radio Tower + Server
(Far-Edge)

Workload: RT app
DU or “Distributed Unit”

Radio Access Network (RAN) for Telco/5G

oy —

R
A

Core Network Local Data Center 5G Radio Tower + Server
(Near-Edge) (Far-Edge)
Workload: Non-RT app Wotkl.oac.:lz RT app)
CU or “Centralized Unit” DU or “Distributed Unit

OS latency requirements for RAN: < 710 us scheduling latency
Impact of exceeding latency constraints: call drops & retries

Telco/5G Real-Time app - Distributed Unit (DU)

* FlexRAN — Intel’s reference implementation for RAN workload
« App's latency constraints are dictated by 5G protocol (3GPP spec)
* App characteristics:

» Uses DPDK in polling mode to process network packets

« Uses high real-time priority (SCHED_FIFO/90+)

* Multi-threaded & CPU intensive

« App aborts if latency exceeds acceptable thresholds

Linux kernel Real-Time design (PREEMPT_RT)

Understanding OS jitter

OS sources for latency spikes to RT apps
* Interrupts: Timers, device |/O, Inter-Processor Interrupts
« OS/kernel housekeeping: Kernel threads, workqueues, RCU

Understanding OS jitter

OS sources for latency spikes to RT apps
* Interrupts: Timers, device |/O, Inter-Processor Interrupts
« OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?
 [solation: Provides features to isolate app from OS housekeeping

Understanding OS jitter

OS sources for latency spikes to RT apps
* Interrupts: Timers, device |/O, Inter-Processor Interrupts
« OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?
 [solation: Provides features to isolate app from OS housekeeping
* Real-Time Preemption: Makes most kernel ops preemptible

Understanding OS jitter

OS sources for latency spikes to RT apps
* Interrupts: Timers, device |/O, Inter-Processor Interrupts
« OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

 [solation: Provides features to isolate app from OS housekeeping

* Real-Time Preemption: Makes most kernel ops preemptible

« Bounded Execution: Non-preemptible code execution is finite + predictable

Understanding OS jitter

OS sources for latency spikes to RT apps
* Interrupts: Timers, device |/O, Inter-Processor Interrupts
« OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

 [solation: Provides features to isolate app from OS housekeeping

* Real-Time Preemption: Makes most kernel ops preemptible

« Bounded Execution: Non-preemptible code execution is finite + predictable
 Mitigation for Priority Inversion: Solved using priority inheritance protocols

Understanding OS jitter

OS sources for latency spikes to RT apps
* Interrupts: Timers, device |/O, Inter-Processor Interrupts
« OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

 [solation: Provides features to isolate app from OS housekeeping

* Real-Time Preemption: Makes most kernel ops preemptible

« Bounded Execution: Non-preemptible code execution is finite + predictable
 Mitigation for Priority Inversion: Solved using priority inheritance protocols

* Real-Time Scheduling Algorithms: SCHED_FIFO, SCHED_RR, SCHED_DEADLINE

Isolation: Shielding RT app from OS jitter

CPUO CPUT CPU2 CPU3 CPU4 CPUS

Housekeeping CPUs isolated
CPUs for RT workload

Isolation: Shielding RT app from OS jitter

CPU isolation:

« Use 'isolcpus’ or cpusets to dedicate subset of CPUs to RT app CPUO CPU1 CPU2 CPU3 CPU4 CPUS
 Isolcpus takes specified CPUs out of the scheduler’s purview
« Use CPU affinity to pin tasks of RT app to isolated CPUs I I

Housekeeping CPUs isolated
CPUs for RT workload

Isolation: Shielding RT app from OS jitter

CPU isolation:

« Use 'isolcpus’ or cpusets to dedicate subset of CPUs to RT app CPUO CPU1 CPU2 CPU3 CPU4 CPUS
 Isolcpus takes specified CPUs out of the scheduler’s purview
« Use CPU affinity to pin tasks of RT app to isolated CPUs I I

Interrupt Affinity: Housekeeping CPUs isolated
« Affine IRQs to housekeeping CPUs CPUs for RT workload

Isolation: Shielding RT app from OS jitter

CPU isolation:

« Use 'isolcpus’ or cpusets to dedicate subset of CPUs to RT app CPUO CPU1 CPU2 CPU3 CPU4 CPUS
 Isolcpus takes specified CPUs out of the scheduler’s purview
« Use CPU affinity to pin tasks of RT app to isolated CPUs I I
Interrupt Affinity: Housekeeping CPUs isolated
CPUs for RT workload

« Affine IRQs to housekeeping CPUs

Full tickless execution:
» Use 'nohz full’ to complete disable periodic timer (scheduling)
ticks on isolated CPUs

Isolation: Shielding RT app from OS jitter

CPU isolation:

« Use 'isolcpus’ or cpusets to dedicate subset of CPUs to RT app CPUO CPU1 CPU2 CPU3 CPU4 CPUS
 Isolcpus takes specified CPUs out of the scheduler’s purview
« Use CPU affinity to pin tasks of RT app to isolated CPUs I I
Interrupt Affinity: Housekeeping CPUs isolated
CPUs for RT workload

« Affine IRQs to housekeeping CPUs

Full tickless execution:
» Use 'nohz full’ to complete disable periodic timer (scheduling)
ticks on isolated CPUs

Adjust placement of deferred processing:
* Move OS housekeeping work off of the isolated CPUs: Ex: RCU
callback processing

Isolation: Shielding RT app from OS jitter

CPU isolation:

« Use 'isolcpus’ or cpusets to dedicate subset of CPUs to RT app CPUO CPU1 CPU2 CPU3 CPU4 CPUS
 Isolcpus takes specified CPUs out of the scheduler’s purview
« Use CPU affinity to pin tasks of RT app to isolated CPUs I I
Interrupt Affinity: Housekeeping CPUs isolated
CPUs for RT workload

« Affine IRQs to housekeeping CPUs

Full tickless execution:
» Use 'nohz full’ to complete disable periodic timer (scheduling)
ticks on isolated CPUs

Adjust placement of deferred processing:
* Move OS housekeeping work off of the isolated CPUs: Ex: RCU
callback processing

Automation: Use tuned package’s ‘real-time’ profile

Real-Time Preemption

CONFIG_PREEMPT_RT: Allows kernel to be configured as real-time

Kernel code is now preemptible except for preempt-disabled critical sections
« Achieved by redesigning fundamental kernel primitives to allow preemption
« Ex: Sleepable spinlocks, threaded interrupt handlers

Priority scheduling: RT app with high-prio can preempt low-prio kernel threads

Non-preemptible code is audited to have bounded worst-case execution

Real-Time Scheduling Algorithms

Real-Time Scheduling Algorithms

SCHED _FIFO:

* First-In First-Out policy

 Fixed priority scheduling with prio range: 1 — 99 (highest)
* Runs highest prio task to completion (yield)

Real-Time Scheduling Algorithms

SCHED _FIFO:

* First-In First-Out policy

 Fixed priority scheduling with prio range: 1 — 99 (highest)
* Runs highest prio task to completion (yield)

SCHED_RR:
* Round Robin policy
« Same as SCHED_FIFO, except for RR with same-prio tasks

Real-Time Scheduling Algorithms

SCHED _FIFO:

* First-In First-Out policy

 Fixed priority scheduling with prio range: 1 — 99 (highest)
* Runs highest prio task to completion (yield)

SCHED_RR:
* Round Robin policy
« Same as SCHED_FIFO, except for RR with same-prio tasks

SCHED_DEADLINE:
« Not a fixed prio scheduling algorithm
« Tasks must specify params to describe their real-time demands
« Params: Deadline D, Runtime R, Period P
« Algo: Guarantees at least runtime ‘R’ within deadline ‘D’ in
every period ‘P’

Stability challenges with CPU intensive RT apps

Stability challenges with CPU intensive RT apps

What happens if a high-prio RT app
causes low-prio kernel threads to
starve permanently?

Stability challenges with CPU intensive RT apps

Problem

* Per-CPU kernel threads cannot be moved to
housekeeping cores

* High prio RT tasks that never yield will starve
kernel threads

« Impact: System hangs and instability

What happens if a high-prio RT app
causes low-prio kernel threads to
starve permanently?

Stability challenges with CPU intensive RT apps

Problem

* Per-CPU kernel threads cannot be moved to
housekeeping cores

* High prio RT tasks that never yield will starve
kernel threads

« Impact: System hangs and instability

What happens if a high-prio RT app
causes low-prio kernel threads to
starve permanently?

Solution
» Short-term/Workaround: stalld package, which
temporarily prio-boosts starving kthreads

* Long-term: Redesign Linux kernel
housekeeping to allow for full isolation

Stability challenges with CPU intensive RT apps

loop-rt.c

sched_param s;
s.sched_priority =

(sched_setscheduler(getpid(), SCHED_FIFO, &s))
perror();

(1)

Stability challenges with CPU intensive RT apps

loop-rt.c

sched_param s;
s.sched_priority =

Run loop-rt on isolated CPU 2
$ taskset —c 2 ./|oop—rt & (sched_setscheduler(getpid(), SCHED_FIFO, &s))

perror();

(1)

Stability challenges with CPU intensive RT apps

loop-rt.c

sched_param s;
s.sched_priority =

Run loop-rt on isolated CPU 2

$ taskset —c 2 ./|oop—rt & (sched_setscheduler(getpid(), SCHED_FIFO, &s))
perror();
(1)
PID USER PR_NI VIRT RES %CPU %MEM TIME+ P S COMMAND

Before

Stability challenges with CPU intensive RT apps

loop-rt.c

sched_param s;
s.sched_priority =

Run loop-rt on isolated CPU 2

$ taskset —c 2 ./|oop—rt & (sched_setscheduler(getpid(), SCHED_FIFO, &s))
perror();
(1)
PID USER PR_NI VIRT RES %CPU %MEM TIME+ P S COMMAND

Before No tasks runnable on CPU 2

Stability challenges with CPU intensive RT apps

loop-rt.c

sched_param s;
s.sched_priority =

Run loop-rt on isolated CPU 2

$ taskset —c 2 ./|oop—rt & (sched_setscheduler(getpid(), SCHED_FIFO, &s))
perror();
(1)
PID USER PR_NI VIRT RES %CPU %MEM TIME+ P S COMMAND
Before
PID USER PR NI VIRT RES %CPU %MEM TIME+ P S COMMAND

After

Stability challenges with CPU intensive RT apps

loop-rt.c

sched_param s;
s.sched_priority =

Run loop-rt on isolated CPU 2

$ taskset —c 2 ./|oop—rt & (sched_setscheduler(getpid(), SCHED_FIFO, &s))
perror();
(1)
PID USER PR_NI VIRT RES %CPU %MEM TIME+ P S COMMAND
Before
PID USER PR NI VIRT RES %CPU %MEM TIME+ P S COMMAND
After

loop-rt, ktimersoftd,
ksoftirgd and kworker
runnable on CPU2

Stability challenges with CPU intensive RT apps

loop-rt.c

sched_param s;
s.sched_priority =

Run loop-rt on isolated CPU 2

$ taskset —c 2 ./|oop—rt & (sched_setscheduler(getpid(), SCHED_FIFO, &s))
perror();
(1)
PID USER PR_NI VIRT RES %CPU %MEM TIME+ P S COMMAND
Before
PID USER PR NI VIRT RES %CPU %MEM TIME+ P S COMMAND
After

ktimersoftd, ksoftirgd and
kworker starved of CPU time!

Stability challenges with CPU intensive RT apps

Start & destroy a container from
housekeeping CPU

$ docker run —it ubuntu /bin/bash
[ubuntu]$ // Attempt to exit the container

Stability challenges with CPU intensive RT apps

Start & destroy a container from
housekeeping CPU PID USER PR NI VIRT RES %CPU %MEN TIME+ P S COMMAND

$ docker run —it ubuntu /bin/bash
[ubuntu]$ // Attempt to exit the container

events_highpri kworker
also runnable on CPU 2

Stability challenges with CPU intensive RT apps

Start & destroy a container from
housekeeping CPU PID USER PR NI VIRT RES %CPU %MEN TIME+ P S COMMAND

$ docker run —it ubuntu /bin/bash
[ubuntu]$ // Attempt to exit the container

events_highpri kworker
also runnable on CPU 2

PID USER PR NI VIRT RES %CPU %MEM TIME+ P S COMMAND

kworker/events, kworker/ipv6_addrconf,
systemd-timesyncd & dockerd all stuck in D state!!!

Stability challenges with CPU intensive RT apps

root@ph3-rt [~]# cat /proc/836/cmdline
Jfusr/bin/dockerd-Hfd://--containerd=/run/containerd/containerd.sock
root@ph3-rt [~ 1#

root@ph3-rt [~]# cat /proc/836/stack

[<6>] __flush_work+exl3e/@xled

[<6>] flush_work+8x1e/0x28

[<6>] rollback_registered_many+0x168/0x5U0
[<=8>] unregister_netdevice_many.part.119+8x12/8x90
[<8>] unregister_netdevice_many+8x16/0x28
[<6=] rtnl_delete_link+8x3f/0x50

[<6>] rtnl_dellink+ex121/@x2ba

[<0>] rtnetlink_rcv_msg+0x12a/0x310

[<6>] netlink_recv_skb+ex5u/0x138

[=8>] rtnetlink_rcv+8x15/0x20

[<6>] netlink_unicast+8x17b/0x220

[<6>] netlink_sendmsg+8x2ce/0x3fe

[<8>] sock_sendmsg+@x3e/0x50

[<8>] __sys_sendto+8x13f/0x180

[<0>] __x6U4_sys_sendto+0x28/0x30

[<0>] do_syscall_su+@x60/0x1be

[<8>] entry_SYSCALL_sU_after_hwframe+oxud/axa9
[<0=] Oxffffffffffffffff

Stability challenges with CPU intensive RT apps

root@ph3-rt [~]# cat /proc/836/cmdline
Jfusr/bin/dockerd-Hfd://--containerd=/run/containerd/containerd.sock
root@ph3-rt [~ 1#

root@ph3-rt [~]# cat /proc/836/stack

[<6>] __flush_work+exl3e/@xled

[<6>] flush_work+8x1e/0x28

[<6>] rollback_registered_many+0x168/0x5U0
[<=8>] unregister_netdevice_many.part.119+8x12/8x90
[<8>] unregister_netdevice_many+8x16/0x28
[<6=] rtnl_delete_link+8x3f/0x50

[<6>] rtnl_dellink+ex121/@x2ba

[<0>] rtnetlink_rcv_msg+0x12a/0x310

[<6>] netlink_recv_skb+ex5u/0x138

[=8>] rtnetlink_rcv+8x15/0x20

[<6>] netlink_unicast+8x17b/0x220

[<6>] netlink_sendmsg+8x2ce/0x3fe

[<8>] sock_sendmsg+@x3e/0x50

[<8>] __sys_sendto+8x13f/0x180

[<0>] __x6U4_sys_sendto+0x28/0x30

[<0>] do_syscall_su+@x60/0x1be

[<8>] entry_SYSCALL_sU_after_hwframe+oxud/axa9
[<0=] Oxffffffffffffffff

root@ph3-rt [~]# cat /proc/825/comm
kworker/0:8+ipv6_addrconf

root@ph3-rt [~ 1# cat /proc/825/stack
[=6=] rtnl_lock+8x15/8x28

[<6>] addrconf_verify_work+8xe/0x20
[<6>] process_one_work+0x1fu/exu7e
[<=8>] worker_thread+ex3u/ex3fe

[<=6>] kthread+0x160/8x180

[=6>] ret_from_fork+exlf/exue

[<0>] OxfFffffffrfififef

root@ph3-rt [~]#

Stability challenges with CPU intensive RT apps

root@ph3-rt [~]# cat /proc/836/cmdline

fusr/bin/dockerd-Hfd://--containerd=/run/containerd/containerd.sock void unregister netdevice many()
root@ph3-rt [~ 1# - -
root@oh3—rt [~ 13 cat /proc/836/stack {

[<6>] __flush_work+8x13e/0xled .ee

[<6>] flush_work+8x18/8x28 rtnl k)ck(x

[<6>] rollback_registered_many+0x168/0x5U0

[<=8>] unregister_netdevice_many.part.119+8x12/8x90

[<6>] unregister_netdevice_many+8x16/8x28 qush_aII_bachogs();
[<6=] rtnl_delete_link+8x3f/0x50

[<6>] rtnl_dellink+8x121/6x2b@ :
[<0>] rtnetlink_rcv_msg+0x12a/0x310 rtnl_unlock(),
[<6>] netlink_recv_skb+ex5u/0x138 }

[=8>] rtnetlink_rcv+8x15/0x20

[<8>] netlink_unicast+@x17b/ex228

[<6>] netlink_sendmsg+8x2ce/0x3fe

[<8>] sock_sendmsg+@x3e/0x50

[<8>] __sys_sendto+8x13f/0x180

[<0>] __x6U4_sys_sendto+0x28/0x30

[<0>] do_syscall_su+@x60/0x1be

[<8>] entry_SYSCALL_sU_after_hwframe+oxud/axa9

[<0=] Oxfffffffffffffffs

root@ph3-rt [~]# cat /proc/825/comm
kworker/0:8+ipv6_addrconf

root@ph3-rt [~ 1# cat
rtnl_lock+8x15/8x28
addrcont_verity_work+0xe/ex20
[<6>] process_one_work+0x1fu/exu7e
[<=8>] worker_thread+ex3u/ex3fe
[<=6>] kthread+0x160/8x180

[=6>] ret_from_fork+exlf/exue

[<0>] OxfFffffffrfififef
root@ph3-rt [~]#

roc/825/stack

Stability challenges with CPU intensive RT apps

root@ph3-rt [~]# cat /proc/836/cmdline

fusr/bin/dockerd-Hfd://--containerd=/run/containerd/containerd.sock void unregister netdevice many() void flush all backlogs()
root@ph3-rt [~ 1# - - -

root@phi-rt [~ 1# cat /proc/s836/<tack { {

[<6>] __flush_work+8x13e/0xled

[<6>] flush_work+8x16/8x26 rtnl_lock(); for_each_online_cpu(cpu) {

[<6>] rollback_registered_many+0x168/0x5U0 .
[<=8>] unregister_netdevice_many.part.119+8x12/8x90 queue_work_on(...),
[<0>] unregister_netdevice_many+8x16/8x20 qush_aII_bachogs(); }
[<6=] rtnl_delete_link+8x3f/0x50
[=8>] rtnl_dellink+ex121/8x2b@ .

[<6>] rtnetlink rcv_msg+0x12a/6x310 rtnl_unlock(); for_each_online_cpu(cpu) {
[<6>] netlink_recv_skb+ex5u/0x138 }

[<0>] rtnetlink_rcv+@x15/0x20 flush WOI’k(...);

[<0>] netlink_unicast+8x17b/0x228 -

[<6>] netlink_sendmsg+8x2ce/0x3fe }

[<6>] sock_sendmsg+8x3e/0x50 }

[<8>] __sys_sendto+8x13f/0x180

[<0>] __x6U4_sys_sendto+0x28/0x30

[<0>] do_syscall_su+@x60/0x1be

[<8>] entry_SYSCALL_sU_after_hwframe+oxud/axa9

[<0>] oxfffffrfffrrffeef

root@ph3-rt [~]# cat /proc/825/comm
kworker/0:8+ipv6_addrconf

root@ph3-rt [~ 1# cat
rtnl_lock+8x15/8x28
addrcont_verity_work+0xe/ex20
[<6>] process_one_work+0x1fu/exu7e
[<=8>] worker_thread+ex3u/ex3fe
[<=6>] kthread+0x160/8x180

[=6>] ret_from_fork+exlf/exue

[<0>] OxfFffffffrfififef
root@ph3-rt [~]#

roc/825/stack

Stability challenges with CPU intensive RT apps

root@ph3-rt [~]# cat /proc/836/cmdline

fusr/bin/dockerd-Hfd://--containerd=/run/containerd/containerd.sock void unregister netdevice many() void flush all backlogs()
root@ph3-rt [~ 1# - - -

root@phi-rt [~ 1# cat /proc/s836/<tack { {

[<6>] __flush_work+8x13e/0xled

[<6>] flush_work+8x16/8x26 rtnl_lock(); for_each_online_cpu(cpu) {

[<6>] rollback_registered_many+0x168/0x5U0 .
[<=8>] unregister_netdevice_many.part.119+8x12/8x90 queue_work_on(...),
[<0>] unregister_netdevice_many+8x16/8x20 qush_aII_bachogs(); }
[<6=] rtnl_delete_link+8x3f/0x50
[=8>] rtnl_dellink+ex121/8x2b@ .

[<6>] rtnetlink rcv_msg+0x12a/6x310 rtnl_unlock(); for_each_online_cpu(cpu) {
[<6>] netlink_recv_skb+ex5u/0x138 }

[<0>] rtnetlink_rcv+@x15/0x20 flush WOI’k(...);

[<0>] netlink_unicast+8x17b/0x228 -

[<6>] netlink_sendmsg+8x2ce/0x3fe }

[<6>] sock_sendmsg+8x3e/0x50 }

[<8>] __sys_sendto+8x13f/0x180

[<0>] __x6U4_sys_sendto+0x28/0x30

[<0>] do_syscall_su+@x60/0x1be

[<8>] entry_SYSCALL_sU_after_hwframe+oxud/axa9

[<0>] oxfffffrfffrrffeef

T T e e ey e Similar problems exist across many Linux subsystems:
kworker/@:@+ipv6_addrconf ext4, cgroups, ftrace, sysctl ...

root@ph3-rt [~ 1# cat /proc/825/stack
rtnl_lock+8x15/8x28
addrcont_verity_work+0xe/ex20
[<6>] process_one_work+0x1fu/exu7e
[<=8>] worker_thread+ex3u/ex3fe
[<=6>] kthread+0x160/8x180

[=6>] ret_from_fork+exlf/exue

[<0>] OxfFffffffrfififef
root@ph3-rt [~]#

Stability challenges with CPU intensive RT apps

flush_all_backlogs issue has been addressed in later kernels

commit 2de79ee27fdb52626aclaclB8ecod8d52basfoau7
Author: Paolo Abeni <pabeni@redhat.com=
Date: Thu Sep 16 23:33:18 2028 +0280

net: try to avoid unneeded backlog flush

flush_all_backlogs() may cause deadlock on systems
running processes with FIFO scheduling policy.

The above is critical in -RT scenarios, where user-space
specifically ensure no network activity is scheduled on
the CPU running the mentioned FIFO process, but still get
stuck.

This commit tries to address the problem checking the
backlog status on the remote CPUs before scheduling the
flush operation. If the backlog is empty, we can skip it.

vl —> y2:
- explicitly clear flushed cpu mask - Eric

Signed-off-by: Paolo Abeni <pabeni@redhat.com=
Signed-off-by: David S. Miller <davem@davemloft.net=>

diff —-—git a/net/core/dev.c b/net/core/dev.c

Stability challenges with CPU intensive RT apps

flush_all_backlogs issue has been addressed in later kernels

commit 2de79ee27fdb52626aclaclB8ecod8d52basfoau7 0
Author: Paolo Abeni <pabeni@redhat.com= bUt even on 66’ we Stl” See per_CPU

Date: Thu Sep 10 23:33:18 2020 +6200 kthreads starving in other areas...

net: try to avoid unneeded backlog flush

flush_all_backlogs() may cause deadlock on systems
running processes with FIFO scheduling policy.

The above is critical in -RT scenarios, where user-space
specifically ensure no network activity is scheduled on
the CPU running the mentioned FIFO process, but still get
stuck.

This commit tries to address the problem checking the
backlog status on the remote CPUs before scheduling the
flush operation. If the backlog is empty, we can skip it.

vl —> y2:
- explicitly clear flushed cpu mask - Eric

Signed-off-by: Paolo Abeni <pabeni@redhat.com=
Signed-off-by: David S. Miller <davem@davemloft.net=>

diff —-—git a/net/core/dev.c b/net/core/dev.c

Stability challenges with CPU intensive RT apps

flush_all_backlogs issue has been addressed in later kernels

commit 2de79ee27fdb52626aclaclB8ecod8d52basfoau7 0
Author: Paolo Abeni <pabeni@redhat.com= bUt even on 66’ we Stl” See per_CPU

Date: Thu Sep 10 23:33:18 2020 +6200 kthreads starving in other areas...

net: try to avoid unneeded backlog flush PIDUSER PR NI VIRT RES SHR %CPU SMEM TINE+ P S COMMAND

flush_all_backlogs() may cause deadlock on systems
running processes with FIFO scheduling policy.

The above is critical in -RT scenarios, where user-space
specifically ensure no network activity is scheduled on
the CPU running the mentioned FIFO process, but still get
stuck.

This commit tries to address the problem checking the
backlog status on the remote CPUs before scheduling the
flush operation. If the backlog is empty, we can skip it.

vl —> y2:
- explicitly clear flushed cpu mask - Eric

Signed-off-by: Paolo Abeni <pabeni@redhat.com=
Signed-off-by: David S. Miller <davem@davemloft.net=>

diff —-—git a/net/core/dev.c b/net/core/dev.c

Stability challenges with CPU intensive RT apps

flush_all_backlogs issue has been addressed in later kernels

commit 2de79ee27fdb52626aclaclB8ecod8d52basfoau7 0
Author: Paolo Abeni <pabeni@redhat.com= bUt even on 66' we Stl” See per_CPU

Date: Thu Sep 10 23:33:18 2020 +6200 kthreads starving in other areas...

i e e] e e ey s L PIDUSER PR NI VIRT RES SHR %CPU SNEM TINE® P S COMNAND
flush_all_backlogs() may cause deadlock on systems
running processes with FIFO scheduling policy.

The above is critical in -RT scenarios, where user-space
specifically ensure no network activity is scheduled on
the CPU running the mentioned FIFO process, but still get
stuck.

This commit tries to address the problem checking the
backlog status on the remote CPUs before scheduling the
flush operation. If the backlog is empty, we can skip it.

vl —> yw2:
- explicitly clear flushed cpu mask - Eric PID USER PR NI VIRT RES SHR %CPU %MEM TIME+ P S COMMAND

Signed-off-by: Paolo Abeni <pabeni@redhat.com=
Signed-off-by: David S. Miller <davem@davemloft.net=>

diff --git a/net/core/dev.c b/net/core/dev.c

Stability challenges with CPU intensive RT apps

but even on 6.6, we still see per-CPU
kthreads starving in other areas...

srivatsa@ubuntu22ed:~% sudo cat /proc/1/comm
systemd

srivatsa@ubuntu220u:~% sudo cat /proc/l/stack
[=e>] __wait_rcu_gp+8x1u3/ex158

[<8>] synchronize_rcu+@x147/0x1760

[<8>] rcu_sync_enter+0x58/0xfe

[=6>] cgroup_procs_write_start+8x105/8x180
[=8>] __cgroup_procs_write+0x5d/0x190

[<=@>] cgroup_procs_write+8x17/8x38

[=@>] cgroup_file_write+8x8c/ex198

[<8>] kernfs_fop_write_iter+8x15f/0x1fe

[=0>] vfs_write+8x2f8/0xu20

[<8>] ksys_write+8x6a/0xfe

[=@>] __x64_sys_write+8x19/0x38

[<8=] do_syscall_su+8x59/8x980

[=6>] entry_SYSCALL_6U_after_hwframe+8xce/0xds
srivatsa@ubuntu22ed:~%

srivatsa@ubuntu22e4:~$ sudo cat /proc/585/comm
gdm3

srivatsa@ubuntu22e4:~% sudo cat /proc/585/stack
[«6>] rt_mutex_schedule+0x2U/0x50

[<6>] __rt_mutex_slowlock_locked.constprop.8+8xfl1/0x260
[<0>] proc_cgroup_show+8xuc/@xuse

[<0>] proc_single_show+8x56/0x1180

[<0>] seq_read_iter+8x132/0xued

[<6>] seq_read+8xa5/0xed

[«8>] vfs_read+0xbl/ex328

[<6>] ksys_read+8x6a/0xf0

[<0>] __x6U_sys_read+8x19/0x30

[<0>] do_syscall_su+8x59/0x90

[<0>] entry_SYSCALL_sU_after_hwframe+8x6e/0xds
srivatsa@ubuntu22ed:~%

srivatsa@ubuntu22e4:~%$ sudo cat /proc/269/comm
systemd-journal
srivatsa@ubuntu22ed:~% sudo cat /proc/269/stack

[<6>]
[<6>]
[<6>]
[<6>]
[<0>]
[<e>]
[<0>]
[<6>]
[<6>]
[<0>]
[<e>]

rt_mutex_schedule+8x24,/8x50
__rt_mutex_slowlock_locked.constprop.@+0xfl/ex260
proc_cgroup_show+8xuc/0xus5e
proc_single_show+8x56/0x118
seq_read_iter+8x132/0xuled
seq_read+8xa5/8xed

vfs_read+8xbl/ex320

ksys_read+0x6a/0xfe
__X6U_sys_read+8x19/0x30
do_syscall_su+8x59/0x90
entry_SYSCALL_sU_after_hwframe+0x6e/0xd8

srivatsa@ubuntu22ey:~%

srivatsa@ubuntu22ed4:~% sudo cat /proc/1549/comm
(wnloader)

srivatsa@ubuntu2204:~% sudo cat /proc/1549/stack
[<8>] rt_mutex_schedule+8x2u/0x50

[<e>] __rt_mutex_slowlock_locked.constprop.8+8xfl/0x268
[<8>] cgroup_kn_lock_live+exd7/exfe

[<8>] __cgroup_procs_write+8x3e/8x198

[<8>] cgroup_procs_write+0x17/0x30

[<8>] cgroup_file_write+0x8c/0x198

[<8>] kernfs_fop_write_iter+@xl5f/ex1fe

[<8>] vfs_write+Ox2f8/0xuUu28

[<6>] ksys_write+Bx6a/0xf0

[<=8>] __x64_sys_write+8x19/0x30

[<0>] do_syscall_su+8x59/8x98

[<8>] entry_SYSCALL_64_after_hwframe+0xsce/0xd8
srivatsa@ubuntu22ed:~$%

Resources for more info...

Linux PREEMPT_RT patches

 realtime:start [Wiki] (linuxfoundation.org)

« realtime:preempt rt versions [Wiki] (linuxfoundation.org)
 realtime:documentation:start [Wiki] (linuxfoundation.org)

Linux Plumbers Conference
* Real-Time & Scheduling Microconference

https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/preempt_rt_versions
https://wiki.linuxfoundation.org/realtime/documentation/start

Q&A

	Slide 1: Linux Kernel Real-Time Design & Challenges with Emerging Telco/5G RT Workloads
	Slide 2: What is Real-Time?
	Slide 3: Understanding ‘Real-Time’
	Slide 4: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 5: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 6: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 7: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 8: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 9: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 10: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 11: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 12: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 13: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 14: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 15: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 16: Scheduling Latency in Linux Kernel: RT vs Non-RT
	Slide 17: Real-Time Preemption (PREEMPT_RT)
	Slide 18: Telco/5G RAN background
	Slide 19: Radio Access Network (RAN) for Telco/5G
	Slide 20: Radio Access Network (RAN) for Telco/5G
	Slide 21: Telco/5G Real-Time app - Distributed Unit (DU)
	Slide 22: Linux kernel Real-Time design (PREEMPT_RT)
	Slide 23: Understanding OS jitter
	Slide 24: Understanding OS jitter
	Slide 25: Understanding OS jitter
	Slide 26: Understanding OS jitter
	Slide 27: Understanding OS jitter
	Slide 28: Understanding OS jitter
	Slide 29: Isolation: Shielding RT app from OS jitter
	Slide 30: Isolation: Shielding RT app from OS jitter
	Slide 31: Isolation: Shielding RT app from OS jitter
	Slide 32: Isolation: Shielding RT app from OS jitter
	Slide 33: Isolation: Shielding RT app from OS jitter
	Slide 34: Isolation: Shielding RT app from OS jitter
	Slide 35: Real-Time Preemption
	Slide 36: Real-Time Scheduling Algorithms
	Slide 37: Real-Time Scheduling Algorithms
	Slide 38: Real-Time Scheduling Algorithms
	Slide 39: Real-Time Scheduling Algorithms
	Slide 40: Stability challenges with CPU intensive RT apps
	Slide 41: Stability challenges with CPU intensive RT apps
	Slide 42: Stability challenges with CPU intensive RT apps
	Slide 43: Stability challenges with CPU intensive RT apps
	Slide 44: Stability challenges with CPU intensive RT apps
	Slide 45: Stability challenges with CPU intensive RT apps
	Slide 46: Stability challenges with CPU intensive RT apps
	Slide 47: Stability challenges with CPU intensive RT apps
	Slide 48: Stability challenges with CPU intensive RT apps
	Slide 49: Stability challenges with CPU intensive RT apps
	Slide 50: Stability challenges with CPU intensive RT apps
	Slide 51: Stability challenges with CPU intensive RT apps
	Slide 52: Stability challenges with CPU intensive RT apps
	Slide 53: Stability challenges with CPU intensive RT apps
	Slide 54: Stability challenges with CPU intensive RT apps
	Slide 55: Stability challenges with CPU intensive RT apps
	Slide 56: Stability challenges with CPU intensive RT apps
	Slide 57: Stability challenges with CPU intensive RT apps
	Slide 58: Stability challenges with CPU intensive RT apps
	Slide 59: Stability challenges with CPU intensive RT apps
	Slide 60: Stability challenges with CPU intensive RT apps
	Slide 61: Stability challenges with CPU intensive RT apps
	Slide 62: Stability challenges with CPU intensive RT apps
	Slide 63: Stability challenges with CPU intensive RT apps
	Slide 64: Resources for more info…
	Slide 65: Q & A

