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What is Real-Time?



Understanding ‘Real-Time’

What is ‘Real-Time’ in Operating Systems?

• Key property: Must provide predictable low-latency guarantees!

• Key metric: Wakeup or Scheduling Latency

• Real-Time is NOT “real fast”

• Trade-off between throughput vs per-task latency bounds

Who needs a Real-Time OS?

• Apps which have stringent latency requirements

• Catastrophic consequences if latency deadlines are missed

• Ex: Robotics & Industrial Automation, Telco/5G RAN



Scheduling Latency in Linux Kernel: RT vs Non-RT
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Real-Time Preemption 

(PREEMPT_RT)

• Nearly all kernel code is made to be preemptible (ex: 

spinlocks, IRQ handlers)

• Preemptible code is available to priority scheduling

• Bounded execution for non-preemptible code in the 

critical paths (ex: no arbitrary loops)

What makes Linux Kernel ‘Real-Time’?
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Radio Access Network (RAN) for Telco/5G

Local Data Center

(Near-Edge)

5G Radio Tower + Server

(Far-Edge)
Core Network

Workload: RT app

DU or “Distributed Unit”
Workload: Non-RT app

CU or “Centralized Unit”

OS latency requirements for RAN: < 10 us scheduling latency

Impact of exceeding latency constraints: call drops & retries



Telco/5G Real-Time app - Distributed Unit (DU)

• FlexRAN – Intel’s reference implementation for RAN workload

• App’s latency constraints are dictated by 5G protocol (3GPP spec)

• App characteristics:

• Uses DPDK in polling mode to process network packets

• Uses high real-time priority (SCHED_FIFO/90+)

• Multi-threaded & CPU intensive

• App aborts if latency exceeds acceptable thresholds



Linux kernel Real-Time design (PREEMPT_RT)
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OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts 

• OS/kernel housekeeping: Kernel threads, workqueues, RCU



Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts 

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping



Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts 

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

• Real-Time Preemption: Makes most kernel ops preemptible



Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts 

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

• Real-Time Preemption: Makes most kernel ops preemptible

• Bounded Execution: Non-preemptible code execution is finite + predictable



Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts 

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

• Real-Time Preemption: Makes most kernel ops preemptible

• Bounded Execution: Non-preemptible code execution is finite + predictable

• Mitigation for Priority Inversion: Solved using priority inheritance protocols



Understanding OS jitter

OS sources for latency spikes to RT apps

• Interrupts: Timers, device I/O, Inter-Processor Interrupts 

• OS/kernel housekeeping: Kernel threads, workqueues, RCU

How does Linux PREEMPT_RT achieve low-latency guarantees?

• Isolation: Provides features to isolate app from OS housekeeping

• Real-Time Preemption: Makes most kernel ops preemptible

• Bounded Execution: Non-preemptible code execution is finite + predictable

• Mitigation for Priority Inversion: Solved using priority inheritance protocols

• Real-Time Scheduling Algorithms: SCHED_FIFO, SCHED_RR, SCHED_DEADLINE
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Isolation: Shielding RT app from OS jitter
CPU isolation:

• Use ‘isolcpus’ or cpusets to dedicate subset of CPUs to RT app

• Isolcpus takes specified CPUs out of the scheduler’s purview

• Use CPU affinity to pin tasks of RT app to isolated CPUs

Interrupt Affinity:

• Affine IRQs to housekeeping CPUs 

Full tickless execution:

• Use ‘nohz_full’ to complete disable periodic timer (scheduling) 

ticks on isolated CPUs

Adjust placement of deferred processing:

• Move OS housekeeping work off of the isolated CPUs: Ex: RCU 

callback processing

Automation: Use tuned package’s ‘real-time’ profile

Housekeeping 

CPUs

CPUs isolated 

for RT workload

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5



Real-Time Preemption

• CONFIG_PREEMPT_RT: Allows kernel to be configured as real-time

• Kernel code is now preemptible except for preempt-disabled critical sections

• Achieved by redesigning fundamental kernel primitives to allow preemption

• Ex: Sleepable spinlocks, threaded interrupt handlers

• Priority scheduling: RT app with high-prio can preempt low-prio kernel threads

• Non-preemptible code is audited to have bounded worst-case execution



Real-Time Scheduling Algorithms
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SCHED_FIFO:

• First-In First-Out policy

• Fixed priority scheduling with prio range: 1 – 99 (highest)

• Runs highest prio task to completion (yield)
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Real-Time Scheduling Algorithms

SCHED_FIFO:

• First-In First-Out policy

• Fixed priority scheduling with prio range: 1 – 99 (highest)

• Runs highest prio task to completion (yield)

SCHED_RR:

• Round Robin policy

• Same as SCHED_FIFO, except for RR with same-prio tasks

SCHED_DEADLINE:

• Not a fixed prio scheduling algorithm

• Tasks must specify params to describe their real-time demands

• Params: Deadline D, Runtime R, Period P

• Algo: Guarantees at least runtime ‘R’ within deadline ‘D’ in 

every period ‘P’
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Stability challenges with CPU intensive RT apps

Problem

• Per-CPU kernel threads cannot be moved to 

housekeeping cores

• High prio RT tasks that never yield will starve 

kernel threads

• Impact: System hangs and instability

Solution

• Short-term/Workaround: stalld package, which 

temporarily prio-boosts starving kthreads

• Long-term: Redesign Linux kernel 

housekeeping to allow for full isolation

What happens if a high-prio RT app 

causes low-prio kernel threads to 

starve permanently?
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Stability challenges with CPU intensive RT apps
loop-rt.c

Run loop-rt on isolated CPU 2

$ taskset –c 2 ./loop-rt &

Before

After

loop-rt, ktimersoftd, 

ksoftirqd and kworker 

runnable on CPU2



Stability challenges with CPU intensive RT apps
loop-rt.c

Run loop-rt on isolated CPU 2

$ taskset –c 2 ./loop-rt &

Before

After

ktimersoftd, ksoftirqd and 

kworker starved of CPU time!
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Start & destroy a container from 

housekeeping CPU

$ docker run –it ubuntu /bin/bash

[ubuntu]$  // Attempt to exit the container
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Stability challenges with CPU intensive RT apps

events_highpri kworker 

also runnable on CPU 2

kworker/events, kworker/ipv6_addrconf,

systemd-timesyncd & dockerd all stuck in D state!!!

Start & destroy a container from 

housekeeping CPU

$ docker run –it ubuntu /bin/bash

[ubuntu]$  // Attempt to exit the container
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Stability challenges with CPU intensive RT apps
void flush_all_backlogs()

{

    …

    for_each_online_cpu(cpu) {

        queue_work_on(…);

    }

    …

    for_each_online_cpu(cpu) {

 

        flush_work(…);

    }

}

void unregister_netdevice_many()

{

    …

    rtnl_lock();

    …

    flush_all_backlogs();

    ….

    rtnl_unlock();

}

Similar problems exist across many Linux subsystems: 

ext4, cgroups, ftrace, sysctl … 
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Stability challenges with CPU intensive RT apps
but even on 6.6, we still see per-CPU

kthreads starving in other areas…



Resources for more info…

Linux PREEMPT_RT patches

• realtime:start [Wiki] (linuxfoundation.org)

• realtime:preempt_rt_versions [Wiki] (linuxfoundation.org)

• realtime:documentation:start [Wiki] (linuxfoundation.org)

Linux Plumbers Conference

• Real-Time & Scheduling Microconference

https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/preempt_rt_versions
https://wiki.linuxfoundation.org/realtime/documentation/start


Q & A
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