
Workqueue insights

Prathu Baronia & Neeraj Upadhyay

29-07-2023



Before we begin

▶ wq: workqueue
▶ cmwq: concurrency managed workqueue
▶ Kernel version considered: v6.5-rc3



History



WQ API



Legacy implementation: ST

▶ Seems like has some drawbacks, right?



Legacy implementation: MT

▶ Seems like has some drawbacks, right?



cmwq



Workqueue software layers
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System wide wqs

▶ system_wq
▶ system_highpri_wq
▶ system_long_wq
▶ system_unbound_wq
▶ system_freezable_wq
▶ system_power_efficient_wq
▶ system_freezable_power_efficient_wq



FAQs

▶ Which system wq to use in my code?
▶ When to use unbounded wqs?
▶ How to decide max_active?



Usecases of system wide wqs

▶ system_wq:
▶ kernel/smp.c: smp_call_on_cpu()

queue_work_on(cpu, system_wq, &sscs.work);
▶ system_highpri_wq:

▶ drivers/gpu/drm/radeon/radeon_display.c
radeon_x->flip_queue = alloc_workqueue("radeon-x", WQ_HIGHPRI, 0);

▶ system_long_wq:
▶ drivers/base/core.c: devlink_dev_release()

queue_work(system_long_wq, &link->rm_work);



Usecases of system wide wqs cont.

▶ system_unbound_wq:
▶ drivers/base/dd.c: driver_deferred_probe_trigger()

queue_work(system_unbound_wq, &deferred_probe_work);
▶ system_freezable_wq:

▶ drivers/virtio/virtio_balloon.c: update_balloon_size_func()
queue_work(system_freezable_wq, work);

▶ system_power_efficient_wq:
▶ sound/soc/codecs/rt5645.c: rt5645_irq() irq handler

queue_delayed_work(system_power_efficient_wq,
&rt5645->jack_detect_work, msecs_to_jiffies(250));


