
Workqueue insights

Prathu Baronia & Neeraj Upadhyay

29-07-2023

Before we begin

▶ wq: workqueue
▶ cmwq: concurrency managed workqueue
▶ Kernel version considered: v6.5-rc3

History

WQ API

Legacy implementation: ST

▶ Seems like has some drawbacks, right?

Legacy implementation: MT

▶ Seems like has some drawbacks, right?

cmwq

Workqueue software layers

0 5 10 15 20 25 30 35 40 45 50Legacy
WQ

Worker 1

Worker 2

Worker 3

RUN SLEEP RUN FIN

RUN SLEEP RUN FIN

RUN SLEEP

CMWQ
(max_active >=3)

Worker 1

Worker 2

Worker 3

RUN SLEEP RUN

RUN SLEEP RUN FIN

RUN SLEEP RUN FIN

CMWQ
(max_active =2)

Worker 1

Worker 2

Worker 3

RUN SLEEP RUN

RUN SLEEP RUN FIN

RUN SLEEP RUN FIN

WQ EXECUTION SCENARIOS

FIN

0 5 10 15 20 25 30 35 40 45 50

CMWQ
(max_active >=3)

Worker 1
(CPU Intensive)

Worker 2

Worker 3

RUN SLEEP RUN

RUN SLEEP RUN FIN

RUN SLEEP RUN FIN

CMWQ
(max_active >=3)

Worker 1

Worker 2
(CPU Intensive)

Worker 3

RUN SLEEP RUN

RUN SLEEP RUN FIN

RUN SLEEP RUN FIN

CMWQ
(Unbounded)

Worker 1

Worker 2

Worker 3

RUN SLEEP RUN

RUN SLEEP RUN FIN

RUN SLEEP RUN FIN

FIN

FIN

FIN

WQ EXECUTION SCENARIOS
CONTD.

0 5 10 15 20 25 30 35 40 45 50

CMWQ
(Ordered)

Worker 1

Worker 2

Worker 3

WQ EXECUTION SCENARIOS
CONTD.

RUN SLEEP RUN FIN

RUN SLEEP RUN FIN

RUN SLEEP

idle/prep

manage

Process
worklist

Process
work

Process
cpu_intensive

Executionsleep

nr_idle==0nr_idle==0

Work item

Work item && nr_running==0

collision
If cpu_intensive,
nr_running--

Back to cm,
nr_running++

Clear pending bit

Blocking, nr_running--

Wake up,
nr_running++

Work item && nr_running <= 1

!pool->worklist || pool-
>nr_running > 1

QUEUEWORK
(CPU)

FINISH

FINISH

ALREADY
QUEUED?

EXECUTING
?

BOUNDED
WQ ?

RR?
CPU ==

UNBOUND?

nr_active <
max_active

USE EXECUTING
WORKER POOL

USE ROUND
ROBIN NEXT

CPU

USE CURRENT
CPU

DESIRED CPU
PWQ

CURRENT CPU
PWQ

PWQ-
>INACTIVE_WORKSPOOL->WORKLIST

FINISH

Y

N

Y

N

Y

N

USE DFL_PWQ or
NUMA NODE

PWQ

Y N
Y N

Y N

WORK
QUEUING

System wide wqs

▶ system_wq
▶ system_highpri_wq
▶ system_long_wq
▶ system_unbound_wq
▶ system_freezable_wq
▶ system_power_efficient_wq
▶ system_freezable_power_efficient_wq

FAQs

▶ Which system wq to use in my code?
▶ When to use unbounded wqs?
▶ How to decide max_active?

Usecases of system wide wqs

▶ system_wq:
▶ kernel/smp.c: smp_call_on_cpu()

queue_work_on(cpu, system_wq, &sscs.work);
▶ system_highpri_wq:

▶ drivers/gpu/drm/radeon/radeon_display.c
radeon_x->flip_queue = alloc_workqueue("radeon-x", WQ_HIGHPRI, 0);

▶ system_long_wq:
▶ drivers/base/core.c: devlink_dev_release()

queue_work(system_long_wq, &link->rm_work);

Usecases of system wide wqs cont.

▶ system_unbound_wq:
▶ drivers/base/dd.c: driver_deferred_probe_trigger()

queue_work(system_unbound_wq, &deferred_probe_work);
▶ system_freezable_wq:

▶ drivers/virtio/virtio_balloon.c: update_balloon_size_func()
queue_work(system_freezable_wq, work);

▶ system_power_efficient_wq:
▶ sound/soc/codecs/rt5645.c: rt5645_irq() irq handler

queue_delayed_work(system_power_efficient_wq,
&rt5645->jack_detect_work, msecs_to_jiffies(250));

