
Linux Kernel Meetup, Bangalore, Nov 2023

Using ASAN and KASAN and then
Interpreting their shadow memory

reports

Preliminaries

• whoami :-)
• All-in-one : https://bit.ly/m/kaiwan

▪ LinkedIn public profile
▪ My Amazon Author page
▪ Corporate Training on Linux

• Brief
• More detailed

▪ My GitHub repos
▪ My tech blog

• How many in the audience here use ___ kernel series in production?
◦ 3.x
◦ 4.x
◦ 5.x
◦ 6.x

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 1 of 19

What I see as one of my contributions
to the community

https://bit.ly/m/kaiwan
https://kaiwantech.wordpress.com/
https://github.com/kaiwan/
https://docs.google.com/spreadsheets/d/1EyW6tCGExZM8S7c7YdizV8NxnqtnrErRPy4Bk1p3RNk/edit#gid=0
https://docs.google.com/spreadsheets/d/1sSSvMZV09z9rJquuZc1dNH5tuNrSgk6WqZd52zmWWwA/pubhtml?gid=0&single=true
https://amazon.com/author/kaiwanbillimoria
https://www.linkedin.com/in/kaiwanbillimoria

Linux Kernel Meetup, Bangalore, Nov 2023

Memory Defects (bugs)
• Incorrect memory accesses:

◦ Using variables uninitialized, aka Uninitalized Memory Read (UMR) bugs
◦ Out-Of-Bounds (OOB) memory accesses (read/write underflow/overflow bugs)
◦ Use-After-Free (UAF) and Use-After-Return (UAR) (aka out-of-scope) bugs
◦ Double-free bugs

• Memory leakage
• Data races
• (Internal) Fragmentation.

The Sanitizers !
Based on CTI - Compile Time Instrumentation - technology.

Available tooling for kernel memory debugging, in a nutshell:
Name Primary Purpose/Use From

kernel ver
Supported on

KASAN
(Kernel
Address
SANitizer)

Detects and reports kernel memory problems like
uaf (use-after-free) and oob (out-of-bounds) bugs.
Requires gcc >= 4.9.2 / gcc-5.0 (usermode), gcc
>= 8.3, any Clang supported by kernel, and
SLUB.
Some overhead: 1/8 kernel virtual address space
reserved for shadowing; every memory access
trapped into via compiler instrumentation (using
inline code makes it much faster but larger binary
image). Tech: Compile Time Instrumentation
(CTI); code compiled with
-fsanitize=kernel-address

4.0 x86_64 from 4.0,
ARM64 from 4.4,
xtensa, s390

v5.11 (Feb 15 2021):
ARM-32 !

UBSAN
(Undefined
Behavior
SANitizer)

Catches several types of runtime
UB. As with KASAN, it uses Compile Time
Instrumentation (CTI) to do so. With
UBSAN enabled fully, the kernel code is compiled
with the -fsanitize=undefined
option switch. Catches arithmetic-related UB and
memory UB...

4.5 x86_64, ARM,
ARM64; gcc 4.9 and
gcc 5 onwards

kmemleak Detect and reports memory leakage within kernel
(only slab cache layer: kmalloc + friends, and
vmalloc).

2.6.31 x86, arm, arm64,
powerpc, sparc, sh,
microblaze, ppc, mips,
s390, metag, tile

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 2 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

SLUB debug Detect and report slab cache – SLUB – memory
errors (via the slub_debug= on kernel cmdline)

2.6.23 <all?>

 KMSAN
(new)

Detect UMR defects in the kernel; (similar to
userspace MSan); not for production

6.1 Only x86_64.
Requires Clang 14.0.6
+

Kmemcheck

Removed in
4.15

Detects and reports uninitialized kernel memory
accesses. Similar to userland valgrind’s memcheck
functionality. Pretty major overhead – meant for
debug kernel usage.

2.6.31 x86 and x86_64 only

KASAN Modes

1. Generic mode:
“... This mode consumes about 1/8th of available memory at kernel start and introduces an overhead of
~x1.5 for the rest of the allocations. The performance slowdown is ~x3.”

2. Software tag-based; only on arm64… fast enough to be used in near-production

3. Hardware tag-based; “… in production as an in-field bug detector or a security mitigation. This
mode is based on the Arm Memory Tagging Extension and is expected to have a very low performance
overhead.”
(2 and 3 can be and are leveraged by Android).

(Generic mode) KASAN is NOT for production..

Can use KFENCE instead; sampling-based approach; fast enough; must run for a long while...

CONFIG_STACKTRACE=y ; helps… ‘for better error detection’.

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 3 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

(K)ASAN shadow memory

KASAN requires 1 byte of ‘shadow’
(virtual) memory to track 8 bytes of
‘real’ (virtual) memory
(or 1 bit to track 1 byte).

So, on x86_64, with a
128T:128T :: U:K VM split,
it uses a ‘shadow memory’ region of
size 128 TB / 8 = 16 TB.

Use procmap utility to literally ‘see’
the KASAN 16 TB shadow region.
(Please try out procmap; star it too!
Partial screenshot on the right...).

User-space ASAN example

My HOSPL book GitHub repo’s ch5/ folder with the membugs.c code is here.
So lets try it out with buggy code (c’mon, spot the bug!):

$ cat membugs.c
...
static void buggy1(void)
{

char arr[5], tmp[8];

memset(arr, 'a', 5);
memset(tmp, 't', 8);
tmp[7] = '\0';

printf("arr = %s\n", arr); /* Bug: read buffer overflow */
}
…

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 4 of 19

 [...]

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/ch5
https://github.com/kaiwan/procmap

Linux Kernel Meetup, Bangalore, Nov 2023

Build using gcc or clang (prefer clang);
Use the -fsanitize=address compiler option switch.

$ clang -g -O0 -Wall -Wextra -DDEBUG -fsanitize=address -fsanitize-address-use-
after-scope membugs.c -o membugs_dbg_asan
...
(Can replace clang with gcc).

$ ASAN_OPTIONS=symbolize=1 ./membugs_dbg_asan 5
arr = 0x7fc572500020 tmp= 0x7fc572500040
===
==72362==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fc572500025
at pc 0x000000442432 bp 0x7ffc6cdd3640 sp 0x7ffc6cdd2dc8
READ of size 6 at 0x7fc572500025 thread T0 << thread T0 => main thread >>
 #0 0x442431 in printf_common(void*, char const*, __va_list_tag*)
asan_interceptors.cpp.o
 #1 0x443d6e in printf
(<...>/Hands-on-System-Programming-with-Linux/ch5/membugs_dbg_asan+0x443d6e)
(BuildId: b712d767295861216504d9a7452e2d6a08d25cab)
 #2 0x4f49ec in read_overflow_compilemem <...>/Hands-on-System-Programming-with-
Linux/ch5/membugs.c:241:2
 #3 0x4f509e in process_args
<...>/Hands-on-System-Programming-with-Linux/ch5/membugs.c:354:4
 #4 0x4f51c8 in main
<...>/Hands-on-System-Programming-with-Linux/ch5/membugs.c:398:2
 #5 0x7fc5743d6b89 in __libc_start_call_main (/lib64/libc.so.6+0x27b89)
(BuildId: 7026fe8c129a523e07856d7c96306663ceab6e24)
 #6 0x7fc5743d6c4a in __libc_start_main@GLIBC_2.2.5 (/lib64/libc.so.6+0x27c4a)
(BuildId: 7026fe8c129a523e07856d7c96306663ceab6e24)
 #7 0x41d394 in _start
(<...>/Hands-on-System-Programming-with-Linux/ch5/membugs_dbg_asan+0x41d394)
(BuildId: b712d767295861216504d9a7452e2d6a08d25cab)

Address 0x7fc572500025 is located in stack of thread T0 at offset 37 in frame
 #0 0x4f4903 in read_overflow_compilemem <...>/Hands-on-System-Programming-with-
Linux/ch5/membugs.c:234:1

 This frame has 2 object(s):
 [32, 37) 'arr' (line 235) <== Memory access at offset 37 overflows this
variable
 [64, 72) 'tmp' (line 235)

...

Shadow bytes around the buggy address:
 0x7fc5724ffd80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x7fc5724ffe00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x7fc5724ffe80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 5 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

 0x7fc5724fff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x7fc5724fff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x7fc572500000: f1 f1 f1 f1[05]f2 f2 f2 00 f3 f3 f3 00 00 00 00
 0x7fc572500080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x7fc572500100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x7fc572500180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x7fc572500200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x7fc572500280: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07
 Heap left redzone: fa
 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack after return: f5
…

How to interpret the (K)ASAN report

• Firstly, “… one shadow byte represents 8 application bytes”

• If a byte is fine - has no memory issues - it shows as 00 (IOW, it’s addressable)

• If the shadow memory map shows any ‘coloured’ bytes, look them up and interpret them via the
very clear Legend seen lower in the ouput; so in this example:
◦ f1 => stack left redzone
◦ f2 => stack mid redzone
◦ f3 => stack right redzone

(A redzone is a deliberately placed region typically around the application / kernel memory bytes in
question, and set deliberately to have no permissions, so as to be able to catch erronous memory
accesses that are made to any byte within it).

• If a shadow bytes shows up in square brackets with any value between [01] and [07], it
implies it was ‘partially addressable’.
◦ Read it like this: if the value is [0n], then

▪ the first n bytes of memory are accessible (fine)
▪ the remaining (8-n) memory bytes aren't legally accessible
▪ so, typically, the memory access attempted on the nth byte (onward) was faulty in some

manner!

• If the Shadow memory < 0: A negative value implies the entire granule (8 bytes) is
inaccessible. The particular (negative) values and their meaning (already freed-up
memory, red zone region, and so on) are encoded in the kernel header file mm/kasan/

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 6 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

kasan.h

In this demo run, some partial output is:

arr = 0x7fc572500020 tmp= 0x7fc572500040
...
...
=>0x7fc572500000: f1 f1 f1 f1[05]f2 f2 f2 00 f3 f3 f3 00 00 00 00

◦ The hex number on the extreme left (with the arrow pointing to it) is where (K)ASAN
thinks the bug occurred!
▪ We printed out the (virtual) addresses of the vars arr[] and tmp[] (in purple colour)
▪ See how perfectly it matches what (K)ASAN shows !
▪ Remember, each byte of shadow memory is 8 bytes of actual memory (or ‘8 granules’)

• so, starting at 0x7fc572500000, 0x20 from here is 32 bytes down… 32 / 8 = 4, i.e.
4 granules of actual memory down…

• that’s why it shows up after four 0xf1 (stack left redzone) granules !

◦ Here, the partially addressable memory shows as [05]
▪ Thus [K]ASAN is saying that

• the memory accesses to the first 5 bytes in the granule were fine
• the remaining (8-5) = 3 bytes aren't legally accessible
• the memory access to the 5th byte of the granule by the app/kernel/module was

faulty! Careful: 5th byte implies the byte at index position 4 of course: 0,1,2,3,4
▪ Thus here:

static void buggy1(void)
{

char arr[5], tmp[8];

memset(arr, 'a', 5);
memset(tmp, 't', 8);
tmp[7] = '\0';

printf("arr = %s\n", arr); /* Bug: read buffer overflow */
}

▪ arr[5] has bytes 0-4 valid. But we attempt to access memory (read) beyond this position
via the printf() ! - it attempted to read memory until the NULL byte which is at index
position 7; this triggered the bug!

 arr[5] tmp[8] : total of 13 bytes
 0 1 2 3 4 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7 8 9 10 11 12
 Value: a a a a a t t t t t t t 0
 ^
 Attempting to access this byte is the bug! Why?

 As it’s beyond the legal bounds of the array arr[]...
 IOW, a read overflow defect…

 It’s byte # 5 of the memory access, as ASAN’s report correctly points out!

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 7 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

Kernel ASAN - KASAN - example

Requires gcc / clang:

 -fsanitize=kernel-address

From my Linux Kernel Debugging book:

Even supports ARM-32 from 5.11 ! (unsure about how well it works though).

Kernel Configuration : from ‘make menuconfig’ :
 Kernel hacking > Memory Debugging > KASAN: runtime memory debugger

$ grep KASAN /boot/config-6.5.9
CONFIG_KASAN_SHADOW_OFFSET=0xdffffc0000000000
CONFIG_HAVE_ARCH_KASAN=y
CONFIG_HAVE_ARCH_KASAN_VMALLOC=y
CONFIG_CC_HAS_KASAN_GENERIC=y
CONFIG_KASAN=y
CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX=y
CONFIG_KASAN_GENERIC=y
CONFIG_KASAN_OUTLINE=y
CONFIG_KASAN_INLINE is not set
CONFIG_KASAN_STACK=y
CONFIG_KASAN_VMALLOC=y
CONFIG_KASAN_MODULE_TEST=m
$

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 8 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

So the kernel itself (+ all modules) is now built with the -fsanitize=kernel-address compiler
option on.

“… KASAN works essentially by being able to check every single memory access; it does
this by using a technique called Compile Time Instrumentation (CTI).

Put very simplistically, the compiler inserts function calls (__asan_load*() and __asan_
store*()) before every 1-, 2-, 4-, 8-, or 16-byte memory access.

Thus, the runtime can figure out whether the access is valid or not (by checking the corresponding
shadow memory bytes).

Now, there are two broad ways the compiler can perform this instrumentation: outline and inline.
Outline instrumentation has the compiler inserting actual function calls (as just mentioned); inline
instrumentation achieves the same thing but in a time-optimized manner by directly inserting the code
(and not having the overhead of a function call)! …”

Outline instrumentation (default): smaller (kernel image) but slower
Inline instrumentation : larger (kernel image) but faster

Can use GCC or clang. NOTE : the kernel image must also be built with the same compiler!
Can check with CONFIG_CC_IS_GCC=y or CONFIG_CC_IS_CLANG=y.
(Recommended : clang 11 +).

Trying out KASAN

With the Kunit test module

You can use the kernel's builtin KUnit test infrastructure to run KASAN test cases!
With
CONFIG_KASAN_KUNIT_TEST=m

modprobe test_kasan
dmesg
...

With a custom module that runs test cases

From my Linux Kernel Debugging book, Ch 5 GitHub repo:
https://github.com/PacktPublishing/Linux-Kernel-Debugging/tree/main/ch5/kmembugs_test .

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 9 of 19

https://github.com/PacktPublishing/Linux-Kernel-Debugging/tree/main/ch5/kmembugs_test

Linux Kernel Meetup, Bangalore, Nov 2023

Build the module with the compiler specified via the CC=gcc|clang environment variable (the
load_testmod script automates this).
Simply run the run_tests script to then run test cases on a KASAN-enabled kernel.

Screenshots follow, showing the setup and a few test runs (followed by a table showing which memory
defects KASAN actually caught):

<< P.T.O. → >>

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 10 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

Running the test cases via the run_tests helper script

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 11 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

Select 5.1 : OOB accesses on dynamic (kmalloc-ed) memory
5.1 Read (right) overflow

Here’s the relevant module code (link):

/* OOB on dynamic (kmalloc-ed) mem: OOB read/write (right) overflow */
int dynamic_mem_oob_right(int mode)
{

volatile char *kptr, ch = 0;
char *volatile ptr;
size_t sz = 32;

kptr = kmalloc(sz, GFP_KERNEL);
if (unlikely(!kptr))

return -ENOMEM;
ptr = (char *)kptr + sz + 3; // right OOB

if (mode == READ) {
/* Interesting: this OOB access isn't caught by UBSAN but is caught by KASAN! */

ch = *(volatile char *)ptr; // invalid, OOB right write
/* ... but these below OOB accesses are caught by KASAN/UBSAN.
 * We conclude that *only* the index-based accesses are caught by UBSAN.
 */
ch = kptr[sz + 3]; // invalid, OOB right read << the bug we trigger here >>

} else if (mode == WRITE) {
/* Interesting: this OOB access isn't caught by UBSAN but is caught by KASAN! */

*(volatile char *)ptr = 'x';
/* ... but these below OOB accesses are caught by KASAN/UBSAN.
 * We conclude that *only* the index-based accesses are caught by UBSAN.
 */
kptr[sz] = 'x'; // invalid, OOB right write

}

kfree((char *)kptr);
return 0;

}

...

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 12 of 19

https://github.com/PacktPublishing/Linux-Kernel-Debugging/blob/1e93d28370b675eac3bddc793d4b8306c4f1750b/ch5/kmembugs_test/kmembugs_test.c#L277

Linux Kernel Meetup, Bangalore, Nov 2023

dmesg
[...]

KASAN catches it!

[132045.099949] BUG: KASAN: slab-out-of-bounds in dynamic_mem_oob_right+0xab/0x130
[test_kmembugs]
[132045.099961] Read of size 1 at addr ffff88801088a723 by task run_tests/37657
…’

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 13 of 19

1

3

2

Linux Kernel Meetup, Bangalore, Nov 2023

Quick Debug Tips
• Can see :

function_name+x/y [module_name] (here: dynamic_mem_oob_right+0xab/0x130)

x : ‘distance’ in bytes (of the machine code) from the start of the function
y : length of the function in bytes.

(With this info, using objdump -dS <x.ko> or readelf or GDB can be very helpful …).

• Read the stack trace bottom-up; it’s a huge clue!
• Ignore (stack) frames that begin ‘?’; it’s likely a leftover ‘blip’ from earlier usage of the same

(kernel) stack memory
[…]

The kernel virtual address region where the bad access occurred...

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 14 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

Reproduced:
 >ffff88801088a700: 00 00 00 00 fc fc fc fc 00 00 07 fc fc fc fc fc
 ^
Interpret the KASAN shadow memory report, as before:

• 00 => the 8-byte memory granule is okay (legal access)
• we have four of them (zero pairs); thus 4*8 = 32 bytes from ffff88801088a700 was legally

accessed
• the next byte shows as 0xfc ; it’s defined here:

https://elixir.bootlin.com/linux/v6.5.9/source/mm/kasan/kasan.h#L139 :

Ah, it’s - just as with user-space ASAN - a redzone (here, for slab memory). The buggy access
occurred there, which implies we ‘spilled over’ / did a ‘right’ overflow into the redzone
following the slab memory region of 32 bytes that we allocated. This is precisely the case.

• But what access? read or write? This line gives the answer:
Read of size 1 at addr ffff88801088a723 by task run_tests/37657

So, we had a read overflow - an OOB (Out Of Bounds) - defect / bug here.
(FYI, the line of code that triggered it:

ch = kptr[sz + 3]; // invalid, OOB right read << the bug we trigger here >>
sz == 32; so sz+3 is 36, so we’re doing ch = kptr[36] which, clearly, is a read overflow!)

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 15 of 19

https://elixir.bootlin.com/linux/v6.5.9/source/mm/kasan/kasan.h#L139

Linux Kernel Meetup, Bangalore, Nov 2023

This portion of the KASAN report literally spells it out:
...

The buggy address is located 3 bytes to the right of
 allocated 32-byte region [ffff88801088a700, ffff88801088a720)
...

One more test case

4.4 Write (left) underflow

...
-------- Running testcase "4.4" via test module now...
[1705.566424] testcase to run: 4.4
[1705.566430] ==
[1705.566523] BUG: KASAN: global-out-of-bounds in global_mem_oob_left+0x19c/0x200
[test_kmembugs]
[1705.566622] Write of size 1 at addr ffffffffc0a849bd by task run_tests/1780

[...]

 >ffffffffc0a84980: 00 02 f9 f9 f9 f9 f9 f9 00 02 f9 f9 f9 f9 f9 f9
 ^
What’s 0xf9 mean?? Lookup the kernel header…
It’s the redzone for global data memory.

mm/kasan/kasan.h
...
#ifdef CONFIG_KASAN_GENERIC

#define KASAN_SLAB_FREETRACK 0xFA /* freed slab object with free track */
#define KASAN_GLOBAL_REDZONE 0xF9 /* redzone for global variable */

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 16 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

/* Stack redzone shadow values. Compiler ABI, do not change. */
#define KASAN_STACK_LEFT 0xF1
#define KASAN_STACK_MID 0xF2
#define KASAN_STACK_RIGHT 0xF3
#define KASAN_STACK_PARTIAL 0xF4

/* alloca redzone shadow values. */
#define KASAN_ALLOCA_LEFT 0xCA
#define KASAN_ALLOCA_RIGHT 0xCB
...

Recall, the KASAN report showed:
Write of size 1 at addr ffffffffc0a849bd by task run_tests/1780
...

So ffffffffc0a849bd - ffffffffc0a84980 = 0x3D = 61.

Key line:
 >ffffffffc0a84980: 00 02 f9 f9 f9 f9 f9 f9 00 02 f9 f9 f9 f9 f9 f9
 ^
 >ffffffffc0a84980: 00 02 f9 f9 f9 f9 f9 f9 00 02 f9 f9 f9 f9 f9 f9
 ^

Aha; the bug occurred at the ‘left’ redzone (as the ‘^’ up arrow points there), indicating an underflow
issue! (left => underflow (read/write) ; right => overflow (read/write)).

Next, in-between the left and right redzones must be the actual memory object… here, we see
 00 02
in-between.
So, think on it, each shadow byte here is a granule representing 8 actual memory bytes; so here, 2*8 =
16 bytes.. The first one is fine (value 00), BUT, the second granule is 02 implying that of the 8 bytes
ONLY thre first two are okay! So, the memory region must be 8+2 = 10 bytes in length. (This turns out
to be correct; see the code below).

The line above says “Write of size 1 …”.
So now we know: it’s a write underflow on global data.

Here’s the relevant module code:
...
#define ARRSZ 10
char global_arr1[ARRSZ];
char global_arr2[ARRSZ];
char global_arr3[ARRSZ];
...

global_mem_oob_left(WRITE, global_arr2);
...

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 17 of 19

global ‘left’ redzone global ‘right’ redzone

Linux Kernel Meetup, Bangalore, Nov 2023

int global_mem_oob_left(int mode, char *p)
{

volatile char w, x, y, z;
volatile char local_arr[20];
char *volatile ptr = p - 3; // left OOB

if (mode == READ) {
 [...]
} else if (mode == WRITE) {

/* Interesting: this OOB access isn't caught by UBSAN but is caught by KASAN! */
*(volatile char *)ptr = 'w';
...

<<
Sample : Extract from my Linux Kernel Debugging book:

...
ptr = kmalloc(123, GFP_KERNEL);
...
ptr[123] = ‘x’;
...

...
>>

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 18 of 19

Linux Kernel Meetup, Bangalore, Nov 2023

Table : which memory defects KASAN actually caught:
Extract from my Linux Kernel Debugging book:

The UMR bug isn’t caught by KASAN..
Just as in userspace ASAN doesn’t catch it. ; but MSAN - Memory Sanitizer - does!

So, the kernel now (6.1 +) has KMSAN - Kernel Memory Sanitizer - which does catch it!

Thank you!

(K)ASAN : Using it and interpreting the shadow memory report, Kaiwan N Billimoria 19 of 19

	Preliminaries
	Memory Defects (bugs)
	The Sanitizers !
	KASAN Modes
	(K)ASAN shadow memory
	User-space ASAN example
	How to interpret the (K)ASAN report

	Kernel ASAN - KASAN - example
	Trying out KASAN

