
One Test Team Approach
Need for unified test case development

- Manvanthara Puttashankar

Problem Statements

 Code changes elsewhere breaks the component you own?.

 Need time to understand test case which reported the failure. Is it

even valid issue?

 Review process is time consuming / More patches to handle for

limited Maintainers.

 Do not have access to other platform systems. So not sure if my

code works?

 Backports did not pick all the relevant patches causing new

regressions.

TEST Conference Flashback (2014- 2017)

Source: https://lwn.net/Archives/ConferenceByYear/

• "Storage vendors tests are kept private".

• Maintainers should do more yelling at developers who clearly have not run the

available tests on their patches. Once a culture of regular testing sets in, it

tends to become persistent

Toward better testing - March 26, 2014

• kselftest goal is to make things run quickly; it's a basic sanity test, not a

full-scale stress test.

Kernel self tests - August 20, 2014

• Should developers expect all of the tests to pass, given that he has

been seeing a lot of failures.

• Reporting of bugs is often slow, even when the existing tests catch

them. that suggests that the tests are not being run that often.

• would be nice to have a mechanism to turn on all the configuration

options needed to run a complete set of tests; there is no way to find

out what those options are now.

Kernel testing - November 4, 2015

• New kernels are released regularly, but it is not entirely clear how much in-

depth testing they are actually getting. Even the mainline kernel may not be

getting enough of the right kind of testing

• The main problem is that it takes a lot of effort to analyze the bugs found with

the tests

• LTP tests many things, but there is also plenty that it does not test.

• Some are running the latest self-tests with older kernels

Testing kernels - September 19, 2017

Key Takeaways:

 Not much of tests done while patches

are pushed.

 Bug reporting is slow.

 Bug analyze takes long time.

 Era of Kselftest.

TEST Conference Flashback (2018 onwards)

One source code but

different tests and

framework approach.

Source: https://lwn.net/Archives/ConferenceByYear/

• Lot of kernel testing going on in various places, but not a lot of

collaboration between those efforts

• The Linux Test Project has lots of tests, but many of those are never

going to pass

A report from the Automated Testing Summit - November 14, 2018

• Make sure that patches have been at least minimally tested before spending

time reviewing them

Filesystem test suites - June 13, 2018

• Different players are testing areas that they care about.

• syzbot has found 5,800 crashes by fuzzing the kernel; in doing so, it has only

exercised around 7% of the kernel.

The 2019 Automated Testing Summit - November 13, 2019

Key Takeaways:

 Missing collaborations b/w teams

 Testing focused on code of interest.

 Large number of known test failures

 Bot reports huge number of issues –

Are they all mustfix / e2e testing?

 Filesystem maintainers enforcing

xfstests.
 Era of CI

Tools: kselftest, xfstests, LTP, Kunit, UML(user-mode Linux), Kernel Test

framework (KFT), Linaro Linux kernel functional testing (LKFT) etc

Source: https://docs.kernel.org/process/maintainer-handbooks.html#maintainer-handbooks-main

Source: https://github.com/orgs/kernelci/projects/16/views/2

Kernel sub-
system

Test Definition

BackportsEarly Linux Test

Shift-left execution
Integrated CI

Common test
case

development

Improved Patch
submission
Guidelines

Current emphasis on

- Patch Summary

- Coding styles

- Reported by / Tested By tags

- regzbot – regression tracking

What’s missing?

- Compulsory add Unit test to cover the

new patch / feature proposed?

- Attachment of test run logs for that

specific sub-system.

• Framework which covers agreed upon tests

across Linux sub-system tests.

• Tests beyond build and boot.

• Consensus upon “Must have” sanity test for

each of the kernel subsystem.

• Functions / feature-based test tag.

• Focus on common test case development

(Similar to Linux source code model)

• Feature/function driven test case within a

sub-system to avoid duplicate tests / extreme

condition tests.

Proposal

Avocado Framework
https://github.com/avocado-framework-

tests/avocado-misc-tests

 Support for OS, IO and KVM

 Wrapper capability to run

kselftests, LTP etc.

 Test categorization to sanity ,

Regression bucket etc

 Yaml concept for different

permutation.

 Framework capability to support

Gcov & Dynamic test selection

being worked.

Thank you

