Challenges of using bandwidth
controller in SMT systems

Shrikanth Hegde - IBM

GONTAINEHS CONTARINERS

Host
e R } COSSSaTs s, 1 [e e et —]
| Containerl | | Container2 | | Container3 |
| xu | |
i (namespaces) | | (namespaces) ! | (namespaces) !
lewoevcesweeceed | [P —

What is a bandwidth controller

* The bandwidth allowed for a group is specified using a quota and period. Within each given "period"
(microseconds), a task group is allocated up to "quota" microseconds of CPU time. That quota is assigned to per-
cpu run queues in slices as threads in the cgroup become runnable. Once all quota has been assigned any

additional requests for quota will result in those threads being throttled. Throttled threads will not be able to run
again until the next period when the quota is replenished.

* Implemented using hrtimer's, values are configurable through sysfs.

* Kubernetes does change the quota values based on the cpu allocated, but it never changes the period values. Its
always set to default of 100m:s.

Problem 1 — Cgroup's Align at throttled expiry

Each container typically has one Pod, roughly translating to a cgroup. (though it is done in heirarchy). Let's assume simpler case.
Each container/cgroup has a separate period timer. It is a hrtimer.
All the cgroup's period is same. Initial offset of all the timers is not set. l.e O.

Hence all the period timers align at 100ms boundary when throttled.

Results in higher SMT mode, lower IPS, more context switches, low throughput.

oo JMMMUUUUOOUY | 0 WL | e Gl | S e R
CPU1 ” F | | ! CPU1 [[| [

cPU2 | H | W chuz w l ||| | w |

v WL e AT

oPU4 | ! ” ” | | ” ” | cPU4 | HH” w | w
CPUS | \ | | \ || CPUS | | | | | | | | HHHH
CPUG |] I || || | || [| JJJJJJJJ cPUG | [w

cPU7 | ” ” [” I” IH # u ” J CPU7 | [w

Solution: Interleave the timers with random initial offset.
A random number below the period value is taken and added to intial offset.

https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?h=sched/core&id=41
abdba9374734b743019fclcc05e3225c82babb

Diffstat
-rw-r--r-- kernel/sched/fair.c 4 .

1 files changed, 4 insertions, O deletions

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c

index b572367249f0b. .bc358dc4faeb3 100644

--- a/kernel/sched/fair.c

+++ b/kernel/sched/fair.c

@@ -5923,6 +5923,10 @@ void init cfs bandwidth(struct cfs bandwidth *cfs b)
INIT LIST HEAD(&cfs b->throttled cfs rq);
hrtimer init(&cfs b->period timer, CLOCK MONOTONIC, HRTIMER MODE ABS PINNED);
cfs b->period timer.function = sched cfs period timer;

/* Add a random offset so that timers interleave */
hrtimer set expires(&cfs b->period timer,
get random u32 below(cfs b->period));
hrtimer init(&cfs b->slack timer, CLOCK MONOTONIC, HRTIMER MODE REL);
cfs b->slack timer.function = sched cfs slack timer;
cfs b->slack started = false;

++ + +

https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?h=sched/core&id=41abdba9374734b743019fc1cc05e3225c82ba6b
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?h=sched/core&id=41abdba9374734b743019fc1cc05e3225c82ba6b

Problem 2 — Performance hit at low utilization and high

concurrency in SMT system

Perceived notion from a User is CPU time is in cycles and if
same number of cycles given in different SMT modes it
should result in same performance.

That is say SMT4 (100%) cycles and SMT8 (50%)

cycles should yield similar throughput

User makes use of BW controller to enforce 50% limit to his
containers. There is only one container (lets assume)

Performance drops by more than 20%

Reason: CPU when in lower SMT mode,
have higher instructions per second. When
the concurrency is high within the cgroup,
moment its unthrottled, it occupies all the
siblings, resulting in SMT8.

Potential Solution: WIP

Number of cpu: 4

Quota cpu: 2
Application
with 4 runnable threads
A A
— —t Thread 4 « « Thread 4 -
4 4
CPU — CPU —+ Thread 3 « « Thread 3 «
3 3
Throttle Throttle
—d e Thread3 «««es oo - - Thread4 « .« .. —t Thread 2 « » Thread 2 +
2 2
1—» Thread 1 =« =+« =+ = Thread 2« « « « 1—.Thread1. « Thread 1 «
| | > | |
100ms 100ms 50ms | 100ms 100ms
Period Period
Figure 1.2

Figure 1.1

Q&A

Thank you

Legal Statement

e This work represents the view of the author and does not necessarily represent the view of
IBM.

e |BM and IBM(logo) are trademarks or registered trademarks of International Business
Machines Corporation in the United States and/or other countries.

e Linux is aregistered trademark of Linus Torvalds

e Other company, product, and service names may be trademarks or service marks of others.

© 2023 IBM Corporation

