Design of the Linux Percpu memory Allocator

Prathu Baronia

16-03-2024

$whoami

» Linux user for past 8 years and started diving in kernel 4 years back.
» Contributed some patches in mm subsystem upstream.
» Used to work in Oneplus Kernel and Qualcomm CPU team.

Before we begin

» Kernel version considered: v6.8

What are percpu variables & why | need it?

» Special variables where we need to allocate per cpu instances
» No locking needed since its specific to a cpu
> Example

// Records register data for each cpu
DEFINE_PER_CPU(struct cpuinfo_arm64, cpu_data);

» Also used in the kernel for percpu counters, percpu page caches etc.

What this talk does not cover

» Handling of percpu allocations in modules
» Milestones in the development history of the percpu allocator

Dev APlIs

Static API
> DEFINE_PER_CPU(type, name)
P Access the percpu variables with per_cpu() and this_cpu_ops macros.
> per_cpu(var, cpu) will return you the instance of var for given cpu.
> per_cpu_ptr(var, cpu) will return you ptr to the instance of var for given cpu.

Dynamic API
void __percpu *alloc_percpu(type)
free_percpu(void __percpu *ptr)

» Access the variables the same way. :)

Under the hood of static APls

#define DEFINE_PER_CPU(type, name)
DEFINE_PER_CPU_SECTION (type, name, ")

#define DEFINE_PER_CPU_SECTION(type,name)
__PCPU_ATTRS(sec) typeof__(type) name

#define _ PCPU_ATTRS(sec)
__percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))

#define PER_CPU_BASE_SECTION ".data..percpu"

Linker magic

» From include/asm-generic/vmlinux.lds.h

#define PERCPU_SECTION(cacheline)
. = ALIGN(PAGE_SIZE) ;
.data..percpu : AT(ADDR(.data..percpu)) {
PERCPU_INPUT (cacheline)
}

» This is placed in the range [__init_begin,
init by free_initmem().

init_end] which is freed after

Linker magic

» From include/asm-generic/vmlinux.lds.h

#define PERCPU_INPUT (cacheline)
__per_cpu_start = .;
*(.data. .percpu..first)
. = ALIGN(PAGE_SIZE);
*(.data..percpu. .page_aligned)
. = ALIGN(cacheline);
*(.data. .percpu. .read_mostly)
. = ALIGN(cacheline);
*(.data..percpu)
*x(.data..percpu. .shared_aligned)
PERCPU_DECRYPTED_SECTION
__per_cpu_end = .;

Under the hood of dynamic APls

#define alloc_percpu(type)
(typeof (type) __percpu *)__alloc_percpu(sizeof (type),
__alignof__(type))

void __percpu *__alloc_percpu(size_t size, size_t align)
{
return pcpu_alloc(size, align, false, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(__alloc_percpu) ;

Lets talk about design of the allocator ... But wait

> We first need to talk about its dependencies
» And things that depend on the percpu allocator

Memblock Allocator

» Allocator used before normal allocators are up.

» Provides APlIs like memblock_alloc* which can allocate and manage memory
early in the boot process with NUMA support.

» arm64_memblock_init() & mem_init are two important functions to look at.

> CONFIG_ARCH_KEEP_MEMBLOCK controls whether memblock data structures are
freed or not after system initialization.

Generic NUMA support

v

Used by arm64 & riscv

arch_numa_init () has both device tree and acpi support.

Parses device tree for cpu and memory nodes to collect information about system
organization.

Provides functions to calculate distance(i.e. memory latency) between NUMA nodes
and a node to cpu map which will come handy in the percpu allocator.

Later in start_kernel()->setup_per_cpu_areas() (Entry point in the
allocator)

Now onto the allocator

» mm/percpu.c
» Allocation using chunks and units.

setup_per_cpu_areas()

» Generic NUMA version of the above function calls into the allocator to setup the

first chunk.
» There are two ways to setup the first chunk:-
» pcpu_embed_first_chunk(...)
» pcpu_page_first_chunk(...)
» These are controlled by percpu_alloc cmdline param.
» Also suprisingly UP systems will also have a setup_per_cpu_areas().

Page mapping the first chunk

commit 09cea6195073ee1d0£f076d907d9249045757245d
Author: Kefeng Wang <wangkefeng.wang@huawei.com>
Date: Fri Nov 5 13:39:44 2021 -0700

Percpu embedded first chunk allocator is the firstly option, but it
could fails on ARM64, eg,

percpu: max_distance=0x5fcfdc640000 too large for
vmalloc space 0x781fefff0000

then we could get
WARNING: CPU: 15 PID: 461 at vmalloc.c:3087 pcpu_get_vm_areas+0x488/0x838
and the system could not boot successfully.

Static allocations

> Static allocations are handled by the first chunk which is organized as:-
» <Static | Reserved | Dynamic>

> Reserved section corresponds to static percpu variables from modules.
» And Dynamic section takes care of normal runtime allocations.

After embed|page setup

> pcpu_setup_first_chunk() is called by both the variants after copying the
static area.

» First chunk is served by two more chunks corresponding to the reserved and
dynamic areas.
» pcpu_reserved_chunk & pcpu_first_chunk(badly named IMO)

> Initialize __per_cpu_offsets[] which is used to calculate per cpu addresses of
variables.

Chunk management

» All chunks are organized into lists in ascending order of free sizes.
» All chunks are managed by a bitmap with metadata blocks.
» Each metadata block has scanning and contiguous area hints which help to avoid
iteration over large portions of bitmap.
» Chunk management functions like creation and population has two versions
mm/percpu-vm.c * mm/percpu-km.c
» percpu-vm.c is the default allocator.
» percpu-km.c is for nommu archs.

Dynamic allocation and freeing paths

Allocation
» Allocator tries to allocate from the fullest chunks first.
» Finds the offset within a chunk which can fit the size and alignment requirement
and allocates the area and returns a percpu ptr.
» If there is no chunk available which can fulfill the requirement we try to create a
new chunk.

Freeing

P Locates the chunk which corresponds to the given ptr.

» percpu_free_area finds the size of the allocation using the boundary bitmap and
clears the allocation map.

» Both paths and chunk movement on lists controlled under the spinlock pcpu_lock

Few things that | have not touched upon here

» Reclaiming of chunks
» Hint management inside the chunks

this_cpu_ops

int *y; |
int cpu; |
cpu = get_cpu(); | this_cpu_inc(&x);
y = per_cpu_ptr(&x, cpw); |
Cky) ++; |
put_cpuQ); |

Thanks for attending!

> Any questions?
» P.S: | am looking for a job. Any openings? :D

