
Design of the Linux Percpu memory Allocator

Prathu Baronia

16-03-2024

$whoami

▶ Linux user for past 8 years and started diving in kernel 4 years back.
▶ Contributed some patches in mm subsystem upstream.
▶ Used to work in Oneplus Kernel and Qualcomm CPU team.

Before we begin

▶ Kernel version considered: v6.8

What are percpu variables & why I need it?

▶ Special variables where we need to allocate per cpu instances
▶ No locking needed since its specific to a cpu
▶ Example

// Records register data for each cpu
DEFINE_PER_CPU(struct cpuinfo_arm64, cpu_data);

▶ Also used in the kernel for percpu counters, percpu page caches etc.

What this talk does not cover

▶ Handling of percpu allocations in modules
▶ Milestones in the development history of the percpu allocator

Dev APIs

Static API
▶ DEFINE_PER_CPU(type, name)
▶ Access the percpu variables with per_cpu() and this_cpu_ops macros.
▶ per_cpu(var, cpu) will return you the instance of var for given cpu.
▶ per_cpu_ptr(var, cpu) will return you ptr to the instance of var for given cpu.

Dynamic API
void __percpu *alloc_percpu(type)
free_percpu(void __percpu *ptr)
▶ Access the variables the same way. :)

Under the hood of static APIs

#define DEFINE_PER_CPU(type, name)
DEFINE_PER_CPU_SECTION(type, name, "")

#define DEFINE_PER_CPU_SECTION(type,name)
__PCPU_ATTRS(sec) __typeof__(type) name

#define __PCPU_ATTRS(sec)
__percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))

#define PER_CPU_BASE_SECTION ".data..percpu"

Linker magic

▶ From include/asm-generic/vmlinux.lds.h

#define PERCPU_SECTION(cacheline)
. = ALIGN(PAGE_SIZE);
.data..percpu : AT(ADDR(.data..percpu)) {

PERCPU_INPUT(cacheline)
}

▶ This is placed in the range [__init_begin, __init_end] which is freed after
init by free_initmem().

Linker magic

▶ From include/asm-generic/vmlinux.lds.h

#define PERCPU_INPUT(cacheline)
__per_cpu_start = .;
*(.data..percpu..first)
. = ALIGN(PAGE_SIZE);
*(.data..percpu..page_aligned)
. = ALIGN(cacheline);
*(.data..percpu..read_mostly)
. = ALIGN(cacheline);
*(.data..percpu)
*(.data..percpu..shared_aligned)
PERCPU_DECRYPTED_SECTION
__per_cpu_end = .;

Under the hood of dynamic APIs

#define alloc_percpu(type)
(typeof(type) __percpu *)__alloc_percpu(sizeof(type),

__alignof__(type))

void __percpu *__alloc_percpu(size_t size, size_t align)
{

return pcpu_alloc(size, align, false, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(__alloc_percpu);

Lets talk about design of the allocator . . . But wait

▶ We first need to talk about its dependencies
▶ And things that depend on the percpu allocator

Memblock Allocator

▶ Allocator used before normal allocators are up.
▶ Provides APIs like memblock_alloc* which can allocate and manage memory

early in the boot process with NUMA support.
▶ arm64_memblock_init() & mem_init are two important functions to look at.
▶ CONFIG_ARCH_KEEP_MEMBLOCK controls whether memblock data structures are

freed or not after system initialization.

Generic NUMA support

▶ Used by arm64 & riscv
▶ arch_numa_init() has both device tree and acpi support.
▶ Parses device tree for cpu and memory nodes to collect information about system

organization.
▶ Provides functions to calculate distance(i.e. memory latency) between NUMA nodes

and a node to cpu map which will come handy in the percpu allocator.
▶ Later in start_kernel()->setup_per_cpu_areas() (Entry point in the

allocator)

Now onto the allocator

▶ mm/percpu.c
▶ Allocation using chunks and units.

c0 c1 c2
------------------- ------------------- ------------

| u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
------------------- ------------------- ------------

setup_per_cpu_areas()

▶ Generic NUMA version of the above function calls into the allocator to setup the
first chunk.

▶ There are two ways to setup the first chunk:-
▶ pcpu_embed_first_chunk(...)
▶ pcpu_page_first_chunk(...)
▶ These are controlled by percpu_alloc cmdline param.

▶ Also suprisingly UP systems will also have a setup_per_cpu_areas().

Page mapping the first chunk

commit 09cea6195073ee1d0f076d907d9249045757245d
Author: Kefeng Wang <wangkefeng.wang@huawei.com>
Date: Fri Nov 5 13:39:44 2021 -0700

Percpu embedded first chunk allocator is the firstly option, but it
could fails on ARM64, eg,

percpu: max_distance=0x5fcfdc640000 too large for
vmalloc space 0x781fefff0000

then we could get
WARNING: CPU: 15 PID: 461 at vmalloc.c:3087 pcpu_get_vm_areas+0x488/0x838
and the system could not boot successfully.

Static allocations

▶ Static allocations are handled by the first chunk which is organized as:-
▶ <Static | Reserved | Dynamic>

▶ Reserved section corresponds to static percpu variables from modules.
▶ And Dynamic section takes care of normal runtime allocations.

After embed|page setup

▶ pcpu_setup_first_chunk() is called by both the variants after copying the
static area.

▶ First chunk is served by two more chunks corresponding to the reserved and
dynamic areas.
▶ pcpu_reserved_chunk & pcpu_first_chunk(badly named IMO)

▶ Initialize __per_cpu_offsets[] which is used to calculate per cpu addresses of
variables.

Chunk management

▶ All chunks are organized into lists in ascending order of free sizes.
▶ All chunks are managed by a bitmap with metadata blocks.
▶ Each metadata block has scanning and contiguous area hints which help to avoid

iteration over large portions of bitmap.
▶ Chunk management functions like creation and population has two versions

mm/percpu-vm.c * mm/percpu-km.c
▶ percpu-vm.c is the default allocator.
▶ percpu-km.c is for nommu archs.

Dynamic allocation and freeing paths

Allocation
▶ Allocator tries to allocate from the fullest chunks first.
▶ Finds the offset within a chunk which can fit the size and alignment requirement

and allocates the area and returns a percpu ptr.
▶ If there is no chunk available which can fulfill the requirement we try to create a

new chunk.

Freeing
▶ Locates the chunk which corresponds to the given ptr.
▶ percpu_free_area finds the size of the allocation using the boundary bitmap and

clears the allocation map.
▶ Both paths and chunk movement on lists controlled under the spinlock pcpu_lock

Few things that I have not touched upon here

▶ Reclaiming of chunks
▶ Hint management inside the chunks

this_cpu_ops

int *y; |
int cpu; |
cpu = get_cpu(); | this_cpu_inc(&x);
y = per_cpu_ptr(&x, cpu); |
(*y)++; |
put_cpu(); |

Thanks for attending!

▶ Any questions?
▶ P.S: I am looking for a job. Any openings? :D

