
DRM / KMS Magic:
Enabling Displays in Embedded Devices

Date: 2024-03-16

Aradhya Bhatia

1

Introduction to the Speaker

Aradhya Bhatia,

Software Engineer at Texas Instruments, Bangalore.

Aradhya is a Linux-Kernel Engineer and has been working for Texas Instruments (TI)

for 2+ years now. It was in TI that he started working in the kernel-space, and had only

dabbled with user-space and baremetal development prior to that.

In TI, the focus of his work has been with respect to displays over Linux and the DRM

subsystem. He enables, maintains and help architect various display hardware for the

TI microprocessor SoCs.

2

Disclaimers

• Opinions presented here are that of the speakers and may not reflect that of

Texas Instruments Inc.

3

Overview

• Display Basics

• Different Display Interfaces

• Hardware Components: DDR to Display

• DRM and Device-tree

• DRM Objects for Hardware

4

Display Basics

5

• Timing Representation of

a Frame

• Active vs Blanking

Intervals

• Types of color spaces

• RGB

• YUV

Display Interfaces

6

• MIPI DPI – Display Pixel Interface

• OLDI – Open LVDS Display Interface

Display Interfaces

7

MIPI DPI - Display Pixel Interface

• Simplest Interface (Parallel RGB)

• Useful for when Display module

has no G-RAM

• Every clock-pulse a pixel is

transmitted.

• Pixel format here can be of

multiple types, based on

– Color Space (RGB/YUV)

– Pixel Size

• RGB888, RGB565, YUV422

Display Interfaces

8

OLDI - Open LVDS Display Interface

• LVDS signaling based (+/- differential

pair)

– Remote Display Setups

– Low Noise Interference

• Packs pixels (RGB666/888) format into

OLDI packets

• 3 or 4 pairs for video + 1 for clock

• Single-Link vs Dual-Link Modes

– Reduces frequency load

• Automotive & Industrial markets

Display Interfaces

9

• MIPI DPI – Display Pixel Interface

• OLDI – Open LVDS Display Interface

-- Other popular Interfaces --

• MIPI DSI – Display Serial Interface

• HDMI

• DP/eDP

Summary

Hardware: DDR to Display

10

• Memory

• Display Controller

– Video Pipes

– Overlayers

– Video Ports

• Bridges

• Connectors / Always-Connected Panels

Hardware: DDR to Display

11

Memory and Framebuffers

• Framebuffer: Memory region(s) where

user-space apps store rendered pixel

data

• Types of Memories

– Dedicated Memory in Graphics Card

(video RAM)

• Not an embedded use-case

– Shared Memory with the system

• With / Without IOMMUs

Hardware: DDR to Display

12

Display Controller: Overview

• The key hardware block that

generates the video signals from

the pixels stored inside the

memory.

• Tasked with numerous operations

– Video processing of the input frame

– Plane Overlaying

– Generating video signals

– Managing “scan-out”

Hardware: DDR to Display

13

Display Controller

• Video Pipes (Planes) • Planes are framebuffers with

attributes assigned.

• Video pipes take the pixels (one

line at a time, unless a 2D-tiler

is involved) and process them

• Perform all kinds of ops

– Frame rotation

– Scaling

– Color conversions

• Saving Memory bandwidth

Hardware: DDR to Display

14

Display Controller

• Overlayers (CRTC) • Multiple planes layered on top

of one another

• Displayed as a single frame in a

single scan-out

• Z-positions

Hardware: DDR to Display

15

Display Controller

• Video Ports (CRTC + Encoder) • This entity generates the DPI / OLDI

signals that we saw earlier

• Other video ports are also capable to

generating signals directly for other

interfaces

Hardware: DDR to Display

16

Display Controller: Summary

• Frames in memory to tangible and displayable video signals

• Bare-minimum stage

– Can directly connect panels that consume these video signals and call it a day

• But, use-cases vary.

– Not every use-case needs DPI or OLDI

– Hence, Bridges.

Hardware: DDR to Display

17

Bridges

• How many times you have had

to use “DP to HDMI” or “HDMI

to VGA” cables!

• Also called the Transcoders

• Converts video signals from

protocols to protocols /

interfaces to interfaces

• Can be in-soc or external

Hardware: DDR to Display

18

Connectors / Always-connected Panels

• “Final” entities in the display

pipeline

• Monitors get connected to

systems via variety of

connectors

– HDMI

– DP

– VGA

• Often have an “internal” bridge

that decodes the video signals

to get pixel values.

Now What?

19

So, you have all the Hardware!

• As a SoM vendor, or an end-consumer, you have all the hardware.

• What needs to be done to get your display running?

Now What?

20

So, you have all the Hardware!

• As a SoM vendor, or an end-consumer, you have all the hardware.

Custom platforms and Panels.

• What needs to be done to get your display running?

DEVICE-TREE!

Device-tree:

21

What can get defined in the DT:

• Memory

• Display-controller

• Bridge(s)

• Connector / Panel

Device-tree: Memory

22

reserved-memory {
#address-cells = <2>;
#size-cells = <2>;
ranges;

/* global cma region */
linux,cma {

compatible = "shared-dma-pool";
reusable;
size = <0x00 0x8000000>;
linux,cma-default;

};

[...]
};

Device-tree: Display Media Graph

23

dss: display-controller@30200000 {
compatible = "ti,am625-dss";
[...]

ports {
port@0 {

reg = <0>;
oldi_out0: endpoint {

remote-endpoint = <&lcd_in0>;
};

};

port@1 {
reg = <1>;
dpi1_out: endpoint {

remote-endpoint = <&it66121_in>;
};

};
};

};

lcd {
compatible = "lincolntech,lcd185-101ct“, “panel-simple”;
backlight = <&backlight>;
port {

lcd_in0: endpoint {
remote-endpoint = <&oldi_out0>;

};
};

};

Device-tree: Display Media Graph

24

it66121: bridge-hdmi@4c {
compatible = "ite,it66121";
[...]

ports {
port@0 {

reg = <0>;
it66121_in: endpoint {

bus-width = <24>;
remote-endpoint = <&dpi1_out>;

};
};

port@1 {
reg = <1>;
it66121_out: endpoint {

remote-endpoint = <&hdmi_connector_in>;
};

};
};

};

hdmi0: connector-hdmi {
compatible = "hdmi-connector";
label = "hdmi";
type = "a";
port {

hdmi_connector_in: endpoint {
remote-endpoint = <&it66121_out>;

};
};

};

DRM Objects

25

Overview

• DRM Device

– DRM planes

– DRM CRTCs

– DRM encoders

• DRM bridges

• DRM Connectors

• DRM Panels

DRM Objects

26

DRM: Modes / Mode Config

struct drm_mode_config
– display-controller’s generic information

– parameters of a possible framebuffer {min, max}_{width, height}
– lists of planes, crtcs, encoders, connectors

– boilerplate and legacy properties like mutexes

struct drm_display_mode
– timing parameters of the display (panel/monitor)

– {h,v}display, {h,v}sync, pixel-clock

DRM Objects

27

DRM device

• struct drm_device

– blanket structure to represent a display-controller unit.

– keeps primary info about DCs

• framebuffer

• mode-config

• power-states

• scan-out details

• Other boilerplate stuff

– represented as /dev/dri/cardn entity in user-space

– apps query all the information through this card

– Can contain multiple crtcs/planes/encoders

DRM Objects

28

DRM device: Planes

• struct drm_plane

– possible crtcs

– pixel format: RGB, YUV

– plane type: primary, overlay, cursor

• struct drm_plane_state

– associated crtc

– associated framebuffer

– rotation: 90/180/270

– alpha, scaling params, z-position

• user-space dumps the frame in the

framebuffer, sets the properties of the

plane

• Plane helper functions:

struct drm_plane_helper_funcs

atomic_check()
atomic_update()
atomic_disable()

DRM Objects

29

DRM device: CRTCs

• struct drm_crtc

– Properties are legacy.

drm_crtc_state used instead

• plane type (primary, cursor)

• display mode

• struct drm_crtc_state

– display mode

– vblank events

– Records of state change

• planes, connectors, modes

• Responsible for generating video

stream, and maintaining the timings

– Reporting v-blanks and Page-flips for

userspace

drm_crtc_handle_vblank()
drm_atomic_helper_page_flip()

• Every crtc has exactly one primary

plane, but can use overlay planes too

• CRTC helper functions:
struct drm_crtc_helper_funcs

mode_valid()/mode_fixup

atomic_enable/disable()

DRM Objects

30

DRM device: Encoders

• struct drm_encoder

– encoder_type:

• DPI, DSI, LVDS, DP

– possible_crtcs

– list of bridge_chain

• intermediate between a crtc and a

connector

• Encodes the pixel-stream by CRTC

to any of the desired outputs.

– Often kept as a soft entity as CRTCs

and Bridges are used prevalently.

• does not have atomic states, and

depends on the crtc and connector

states

DRM Objects

31

DRM Bridges

• struct drm_bridge

– ops (EDID, Hot Plug Detect)

– connected encoder

– connector_type:

• DPI, DSI, LVDS, DP

– timings

– list of bridge_chain

• struct drm_bridge_state

– input and output bus type

• Doesn’t come under DRM device or get

represented in user-space

• But a key component to get the desired

display on-going

• Bridge functions:
struct drm_bridge_funcs

attach()/detach()

mode_valid()/mode_fixup

get_modes()

atomic_enable/disable()
atomic_get_input/output_bus_fmts()

DRM Objects

32

DRM Connectors

• struct drm_connector

– type:

• DPI, DSI, LVDS, DP

– Status:

• connected / disconnected / unknown

– possible_encoders

– list of modes

• struct drm_connector_state

– associated crtc/encoder

– basic properties

• Symbolic representation of the hardware as

physical connectors do not require

programming

• User-space tells a combination of

connector, crtc and plane(s) to get a run a

display

• Gets and conveys the modes

• Connector Helper functions:
struct drm_connector_helper_funcs

get_modes()

detect()

DRM Objects

33

DRM Panels

• struct drm_panel

– backlight

– connector_type:

• DPI, DSI, LVDS, DP

• Fixed panels seen on HMI devices like kiosks

in ATMs, shopping markets, digital ad boards.

• Usually have a single mode, hardcoded in the

driver or the device-tree

• Panel functions:
struct drm_panel_funcs

get_modes/timings()

prepare/unprepare()

enable/disable()

DRM Objects

34

static const struct panel_desc
lincolntech_lcd185_101ct = {

.modes = &lincolntech_lcd185_101ct_mode,

.bpc = 8,

.num_modes = 1,

.size = {
.width = 217,
.height = 136,

},
.delay = {

.prepare = 50,

.disable = 50,
},
.bus_flags = DRM_BUS_FLAG_DE_HIGH,
.bus_format = MEDIA_BUS_FMT_RGB888_1X7X4_SPWG,
.connector_type = DRM_MODE_CONNECTOR_LVDS,

};

static const struct drm_display_mode
lincolntech_lcd185_101ct_mode = {

.clock = 155127,

.hdisplay = 1920,

.hsync_start = 1920 + 128,

.hsync_end = 1920 + 128 + 20,

.htotal = 1920 + 128 + 20 + 12,

.vdisplay = 1200,

.vsync_start = 1200 + 19,

.vsync_end = 1200 + 19 + 4,

.vtotal = 1200 + 19 + 4 + 20,
};

Generic Panel Driver: panel-simple

static const struct of_device_id platform_of_match[] = {
[...]
{

.compatible = "lincolntech,lcd185-101ct",

.data = &lincolntech_lcd185_101ct,
},
[...]

};

35

Thank you!

References

• https://projectf.io/posts/video-timings-vga-720p-1080p/

• https://fastbitlab.com/display-interface-types/

• https://www.computerhope.com/jargon/h/hdmi.htm

• https://git.ti.com/cgit/ti-linux-kernel/ti-linux-kernel/?h=ti-linux-6.1.y-cicd

• https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git

• “A current overview of DRM KMS Driver Side API”, Talk in EOSS

36

https://projectf.io/posts/video-timings-vga-720p-1080p/
https://fastbitlab.com/display-interface-types/
https://www.computerhope.com/jargon/h/hdmi.htm
https://git.ti.com/cgit/ti-linux-kernel/ti-linux-kernel/?h=ti-linux-6.1.y-cicd
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
https://youtu.be/nNY7NjUIJRA?si=8uJzBuqLPVeBbMzv

Credits and Acknowledgement

• Texas Instruments Inc.

• The Linux Foundation.

• Freedesktop.org

37

Q&A

• Contact Information:

– Aradhya Bhatia <a-bhatia1@ti.com>

• IRC @ aradhya7

• Also on IRC @ libera.chat #linux-ti

38

Learn more about TI products

‒ https://www.ti.com/linux

‒ http://opensource.ti.com/

‒ https://www.ti.com/processors

‒ https://www.ti.com/edgeai

https://www.ti.com/microcontrollers-mcus-processors/overview.html
http://opensource.ti.com/
https://www.ti.com/processors
https://www.ti.com/edgeai

