
Data type profiling support in perf
infrastructure

Athira Rajeev
(athirar.rajeev@gmail.cpm)

Linux Technology center @IBM

mailto:athirar.rajeev@gmail.cpm

Agenda
• What is perf/PMU
• Counting events
• Profiling/sampling
• Perf report/annotate
• Perf mem record

• Data type profiling feature
• Enablement in community by Namhyung
• How it works
• How it Is useful

• Enablement of data type feature in powerpc
• Changes to enable this in powerpc
• Current state, results and further plans

Perf
tool

Apps

Perf/PMU
Driver

Linux Kernel

Power9

CPU/Thread
PMU Counters

User space

Kernel

Hardware

What is PMU/perf
• Counters: hardware/software units to count events.
• Dedicated registers in processor for counting events : H/W counters
• Variables in kernel for software events: S/W counters

• Performance Monitoring Unit (PMU)
• Set of hardware counters built into core logic
• Provides precise picture of CPU resource utilization
• Instruments most of the core execution units

• Perf infrastructure has two main
components
• Perf kernel API (perf_event_open syscall)
• Perf tool (user space tool, part of linux kernel

source tree and supported by all Linux distro's)

Perf Sampling

$ perf record./ebizzy (default event is cycles)

• Ability to look at an instruction throughout its life-
cycle in the pipeline

• When counter overflows, capture sample and saves
in "perf.data"

• On PMI, sample details captured includes:
• Instruction/data address, branch entries, call-

graphs
• Useful to find hotspots in an application

$ perf record -a sleep 20 --------> -a for system wide monitoring
[perf record: Woken up 0 times to write data]
[perf record: Captured and wrote 637.382 MB perf.data (11916467 samples)
]

Perf.data that will be referred to in further slides.

Perf Counting

$ perf stat -e cycles -- ./ebizzy

Subcommand

Perf tool Event Workload

Perf tool Workload

Perf report
• Reports samples recorded from "perf.data" file

perf report

Samples: 11M of event 'cycles:P'
Event count (approx.): 15056187404879
#
Overhead Command Shared Object Symbol
........
#
 36.06% ws1 [kernel.kallsyms] [k] queued_spin_lock_slowpath
 27.51% swapper [kernel.kallsyms] [k] __ppc64_runlatch_off
 5.99% swapper [kernel.kallsyms] [k] enqueue_task_fair
 5.55% ws1 [kernel.kallsyms] [k] newidle_balance
 1.21% ws1 [kernel.kallsyms] [k] _raw_spin_lock_irq
 1.17% ws1 [kernel.kallsyms] [k] __schedule
 1.00% ws1 [kernel.kallsyms] [k] _raw_read_lock
 0.83% ws1 [kernel.kallsyms] [k] update_sg_lb_stats
 0.64% swapper [unknown] [H] 0x00000000002aeddc
 0.60% ws1 [kernel.kallsyms] [k] do_dec_rlimit_put_ucounts
 0.60% ws1 [kernel.kallsyms] [k] update_cfs_group
 0.59% swapper [kernel.kallsyms] [k] update_cfs_group

Maximum samples are
from these top 4 functions

Perf annotate (enqueue_task_fair from perf.data)

• Support source code
annotation
• Drill down at instruction

level

perf report (annotated view)
Press 'a' on any sample

Samples: 11M of event 'cycles:P', 4000 Hz, Event count (approx.): 15056187404879
enqueue_task_fair /lib/modules/6.8.0-rc6/build/vmlinux [Percent: local period]
 0.00 │ nop
 │ if (trace_sched_update_nr_running_tp_enabled()) {
 │ call_trace_sched_update_nr_running(rq, count);
 │ }
 │
 │ #ifdef CONFIG_SMP
 │ if (prev_nr < 2 && rq->nr_running >= 2) {
 0.00 │ cmplwi r31,1
 0.05 │ ↓ ble 3a0
 0.00 │184: nop
 │ * A better way of solving this problem would be to wait for
 │ * the PELT signals of tasks to converge before taking them
 │ * into account, but that is not straightforward to implement,
 │ * and the following generally works well enough in practice.
 │ */
 │ if (!task_new)
 0.03 │188: andi. r27,r27,1
 1.78 │ ↓ beq 238
 │ if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {

91.08 │ ld r8,2752(r28)
 0.09 │ lwz r9,540(r8)
 0.00 │ cmpwi r9,0
 0.21 │ ↓ bne 238
 │ unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu),

UCLAMP_MIN);

Instruction which consumed
max cycles in
enqueue_task_fair function

Why data type profiling
• Perf annoate of enqueue_task_fair pointed to the

instruction which consumed max cycles in that sample

Question: What data type is being accessed here ? ex: basic
data types like int or any struct)
Solution: Use data type feature in perf to solve this without
manually doing perf annotate and mapping in the code

Data type profiling enablement in
community

• Support in community added by Namhyung Kim
• Associate samples to Data type information
• Uses Dwarf debug information to retrieve the type info
• No change needed in kernel/application workload
• Needs memory access samples in perf.data file

workload
Perf.data

containing
memory access

samples

Perf record Perf
annotate

Pick the instruction
and map line from

code to find data type

Use perf report with
type sort option to

find data type

Perf report

How to use

• Get the profile data (perf.data)
• For more precision, use memory access events
• If arch doesn't support mem events, use events which gives relevant

memory access instructions in samples.
• Needs kernel with debuginfo since it uses DWARF debug data
• $ perf mem record or $ perf record –e <event>

• Use perf report/annotate to view the result
• In perf report, use sort keys: type, typeoff

• type : shows name of the data type
• typeoff: shows name of the field in the data type
• $ perf report –s type,typeoff

• In annotate, use data-type option for data field level annotation
• $ perf annotate –data-type

Support for data type profiling on
powerpc architecture
• powerpc instruction nmemonic table to associate load/store

instructions with move_ops which is use to identify if instruction is
a memory access one.

• To get register number and access offset from the given
instruction, tool uses fields from "struct arch" -> objump. Add
entry for powerpc here.

• Add get_arch_regnum to return register number from the register
name string.

Patch in discussion in mailing list:
https://lore.kernel.org/linux-perf-users/20240309072513.9418-1-
atrajeev@linux.vnet.ibm.com/T/#t

https://lore.kernel.org/linux-perf-users/20240309072513.9418-1-atrajeev@linux.vnet.ibm.com/T/
https://lore.kernel.org/linux-perf-users/20240309072513.9418-1-atrajeev@linux.vnet.ibm.com/T/

Identify data type for enqueue_task_fair function
$ perf report -v -s symbol,type,typeoff

Samples: 11M of event 'cycles:P'
Event count (approx.): 15056187404879
#
Overhead Symbol Data Type Data Type Offset IPC [IPC Coverage]
........

 36.07% 0xc0000000000ad8f8 v [k] queued_spin_lock_slowpath (unknown) (unknown) +0 (no field) - -
 27.51% 0xc000000000020d14 v [k] __ppc64_runlatch_off struct thread_info struct thread_info +8 (local_flags) -
 -
 5.76% 0xc0000000001bfe68 v [k] enqueue_task_fair struct rq struct rq +2752 (rd) - -
 3.03% 0xc0000000001c432c v [k] newidle_balance struct rq struct rq +2752 (rd) - -
 2.47% 0xc0000000001c4330 v [k] newidle_balance struct rq struct rq +2760 (sd) - -

addr2line -f -e vmlinux -a 0xc0000000001bfe68
0xc0000000001bfe68
update_overutilized_status
/root/src/linux/kernel/sched/fair.c:6675

addr2line -f -e vmlinux -a 0xc0000000001c432c
0xc0000000001c432c
newidle_balance
/root//src/linux/kernel/sched/fair.c:12335

Further work

• Complete the basic foundational patches
• Check X form instructions(current patches solves D form)
• Resolve the frame base address type variables in DWARF

info
• Understand and Resolve remaining unresolved ones in

the result
• Explore additional contributions that can be added to the

feature

Backup

Perf mem events (Architecture specific)

• Provides information about sampled instruction
• Useful for memory access analysis
• Load latency analysis
• Memory hierarchy (reload source)

perf mem record <workload>
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.027 MB perf.data (6 samples)]

Usage: To capture memory access In samples

perf mem record –e list

Usage: To list memory access events for the specific architecture

Usage: To capture specifically loads or stores

perf record –e mem-loads –a -----> capture memory loads
perf record –e mem-stores –a -----> capture memory stores

Raw Hardware Events
• Hardwares typically support several more

events than the kernel's generic events.
• Hardware specific events defined in Perfo

rmance Monitoring Unit (PMU) spec.

• Powerpc supports CPU events like:

PM_LD_CMPL Count of Loads completed
PM_DISP_HELD Dispatch Held

PM_ST_MISS_L1 Store Missed L1

PM_FLOP Floating
Point Operation Finished

PM_BR_MPRED_CMPL Number of Branch mispredicts

Perf mem – Memory Access analysis
• Provides information about sampled instruction

• Useful for memory access analysis
• Load latency analysis
• Memory hierarchy (reload source)
• ./perf mem record/report

